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Abstract—Manycore machines are becoming an alter-
native to physically distributed systems. The software
running on these machines more and more resembles
distributed, message-passing applications. Consequently,
these machines require robust and efficient inter-core
communication mechanisms. In this paper, we study ten
communication mechanisms that are considered state-of-
the-art. We show that only two communication mecha-
nisms are robust, but that, unfortunately, they are not
efficient. We do thus propose REICoM, a new inter-
core communication mechanism that is both robust and
efficient. Using two macro-benchmarks (a consensus and
a snapshot protocol), we show that REICoM consistently
improves the performance over existing mechanisms.

Keywords-Manycore machines; inter-core communica-
tion; fault-tolerance; operating systems

I. INTRODUCTION

Modern computers have an increasing number of
cores. They become an alternative to physically dis-
tributed systems as they are economical and consume
less energy than their distributed counterparts for run-
ning servers applications. The distribution of these
manycore systems inherently calls for the development
of fault-tolerance mechanisms, e.g., replication proto-
cols, checkpointing protocols, broadcasting protocols,
etc. in order to deal with software and hardware failures.
As an example, several recent studies have proposed
multicore versions of fault-tolerance protocols: Pax-
osInside [8] is a consensus protocol in the lineage
of the Paxos protocol for manycore machines, and
Chun et al. have proposed to adapt Byzantine Fault
Tolerant protocols to manycore machines [4]. Moreover,
the Barrelfish operating system [2] runs, on top of
a novel communication mechanism specially devised
for efficient point-to-point communication on manycore
machines, a two phase commit replication algorithm
to maintain a consistent state of the system on the
different cores. Finally, fault-tolerant protocols often
require checkpointing [10] and snapshot algorithms [14]
in order to recover from a failure.

These fault-tolerant protocols require communication
mechanisms that are both robust and efficient. Re-

garding robustness, we expect from a mechanism that
it protects message integrity against faulty user-level
processes and that it properly handles the crash of
either senders or receivers. This is the case of most
kernel-level mechanisms (e.g., Pipes) contrary to user-
level ones (e.g., the message-passing mechanism of
the Barrelfish OS). Regarding efficiency, we expect
from a mechanism that it provides an adequate one-
to-many communication primitive. That is to say, it
has to minimize the number of message copies and
of system calls needed for a one-to-many message ex-
change. However, all the state-of-the-art communication
mechanisms we have studied fail in providing efficient
one-to-many communication primitives, as either the
number of memory copies (e.g., Unix Domain sockets)
or of system calls (e.g., IPC Message Queues) is a
function of the number of receivers.

We present in this paper the Robust and Efficient
Inter-core Communication Mechanism (REICoM). To
the best of our knowledge, it is the first kernel-level
inter-core communication mechanism that is robust and
efficient. The robustness of REICoM is characterized
by the following properties: (1) the memory zone in
which the messages are written is not alterable by
user-level processes, as it is protected by the kernel
and (2) the crash of the senders and the receivers is
properly handled as it listens to process crash events
sent by the kernel. The efficiency of REICoM is due to
the fact that it minimizes both the number of system
calls and the number of message copies required to
send a message to a set of receivers. Specifically,
REICoM requires only one message copy and one
system call for sending a message to a set of N
receivers. REICoM is not intended to replace existing
mechanisms for applications that require only one-to-
one communications. Instead, REICoM is optimized for
one-to-many communications. Indeed, we demonstrate
in our performance evaluation that even for applications
that rely on a minority of one-to-many communications,
using REICoM makes a non-negligible difference in
performance. For instance, with 24 nodes, the snapshot



algorithm proposed in [14], which we implemented,
requires one one-to-many communication and twenty-
three one-to-one communications. Using REICoM, this
protocol is twice as fast as using Pipes, which is the
most efficient state-of-the-art communication mecha-
nism that provides the same level of robustness.

We compare analytically the robustness of REICoM
and experimentally its performance, to ten state-of-the
art communication mechanisms. Our analysis shows
that only two of the ten mechanisms, i.e., TCP sock-
ets and Pipes, offer the same level of robustness as
REICoM. Finally, we evaluate the performance of the
different communication mechanisms on a 24-core ma-
chine, using PaxosInside [8] and the snapshot protocol
of Manivannan et al. [14]. These applications use a mix
of one-to-one and one-to-many communications. Re-
sults show that REICoM systematically outperforms all
state-of-the-art mechanisms. More precisely, REICoM
outperforms the two robust mechanisms, i.e., TCP and
Pipes by up to 920% and 300% for TCP and 190% and
140% for Pipes in the two benchmarks, respectively.

The remaining of the paper is organized as follows:
Our system model is detailed in Section II. In Sec-
tion III, we describe and analyze the existing com-
munication mechanisms that can be used for inter-core
communications. We conclude that none of the existing
mechanisms is both robust and efficient for inter-core
communications. We do thus present REICoM, in Sec-
tion IV. We then compare the performance achieved by
REICoM to that achieved by state-of-the-art protocols
in Section V. We finally discuss related work in Sec-
tion VI, before concluding the paper in Section VII.

II. SYSTEM MODEL

We consider a manycore machine on which message-
passing applications are run. The communications be-
tween the different cores are assumed to be eventu-
ally synchronous. Namely, synchronous periods, during
which there is an unknown bound ∆ after which a
sent message is delivered, occur infinitely often, so
that the system can eventually make progress. This
model captures the fact that a core may be slow or that
the inter-core links may become saturated. Moreover,
messages may be lost, duplicated or delivered out-of-
order.

We use the terms faults, errors and failures as defined
in [1]. We assume that the fault model is software
arbitrary faults. For instance, a process may crash,
corrupt its memory area, or become unresponsive. Fi-
nally, the machine and the kernel compose our Trusted
Computing Base (TCB): they are supposed to be correct
and resilient to faults.

III. BACKGROUND

In this section, we analytically compare ten inter-
core communication mechanisms with respect to their
robustness and their efficiency. The seven first mech-
anisms are kernel-level mechanisms provided by the
traditional Linux/Unix operating systems. Some of these
mechanisms have been devised for communication be-
tween processes residing on the same host, namely
Unix domain sockets, Pipes, Pipes+vmsplice(), IPC
message queues and POSIX message queues (respec-
tively abbreviated IPC MQ and POSIX MQ). Whereas
others have been designed for communication over an
IP network but are often used for communication on the
same host, namely TCP and UDP sockets. The three last
mechanisms are parallelism-oriented mechanisms. Bar-
relfish message passing is a user-level mechanism which
has been specifically devised for manycore machines.
Open MPI [6] (abbreviated OMPI) and KNEM [3] are
two mechanisms that have been designed for multi-
processor machines. The former is a user-level mech-
anism that implements the MPI interface [7], while
the latter is a Linux kernel module that is used in
conjunction with MPI1.

Table I summarizes the key characteristics of the
studied mechanisms. These characteristics are divided
into two categories: those related to the robustness of
the different mechanisms (rows 1 to 4) and those related
to the performance of the mechanisms (rows 5 to 8).

A. Robustness

We consider that a communication mechanism is
robust when faulty user-level processes cannot corrupt
messages or data structures used by the communica-
tion mechanism, and when user-level crashes of either
senders or receivers can not hurt the communication
mechanism. Consequently, we report in Table I four
different characteristics: the possibility for a faulty user-
level process to corrupt messages (row 1), the pos-
sibility for a faulty user-level process to corrupt the
data structures of the communication mechanism (row
2), the ability to correctly handle crashes of senders
processes (row 3), and the ability to correctly handle
crashes of receivers processes (row 4). We consider that
the crash of a sender process is correctly handled if the
receivers associated to that sender are notified of the
crash (e.g., with a specific value returned by the receive
primitive), and can thus stop waiting for messages from
that sender. We say that a receiver crash is correctly
handled when senders communicating with this receiver

1The choice of evaluating the OMPI implementation of the MPI
interface is due to the fact that KNEM supports OMPI.
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1 Faulty user-level processes cannot corrupt messages
√ √ √ √ √ √

- - - -
√

2 Faulty user-level processes cannot corrupt data structures
√ √ √ √ √ √ √

- - -
√

3 Crashes of senders are correctly handled -
√

- - -
√ √

- - -
√

4 Crashes of receivers are correctly handled
√ √

- - -
√ √

- - -
√

5 Nb message copies for sending 1 message to N receivers N N N N N N 0 N N 0 1
6 Nb message copies for receiving 1 message 1 1 1 1 1 1 1 1 1 1 1
7 Nb system calls for sending 1 message to N receivers N N N N N N 2*N 0 0 N 1
8 Nb system calls for receiving 1 message 1 1 1 1 1 1 2 0 0 1 1

Table I: Summary of the key characteristics of state-of-the-art communication mechanisms, and of REICoM.

are notified, and when messages sent to the crashed
receiver are garbage collected from the data structures
of the communication mechanism.

We can make three observations about the results
displayed in Table I. The first observation is that all
kernel-level communication mechanisms, but Pipe +
vmsplice() and KNEM, guaranty that faulty user-
level processes can neither corrupt messages, nor data
structures used in the mechanism. This comes from
the fact that, using these mechanisms, when a message
is sent, it is copied from the user-space buffer of the
senders process to a kernel-space buffer. This buffer,
as well as the data structures of the communication
mechanism, are not accessible by user-space processes,
and can thus not be corrupted. On the contrary, when
using Pipe + vmsplice(), KNEM or any of the
user-level mechanisms, i.e., Barrelfish MP or OMPI,
messages are not copied from the user space to the
kernel space. Consequently, senders can accidentally
access and modify a message after it has been sent.
Further, in Barrelfish MP, OMPI and KNEM, all data
structures used in the communication mechanism are
kept in the user space and are directly accessible by
user-level processes. It is thus possible for faulty pro-
cesses to corrupt these data structures. This may result
in the corruption of messages, in their delivery out-of-
order and in message loss.

The second observation we can make is that only
TCP, Pipes and Pipes + vmsplice() correctly handle
the crash of senders processes. The remaining mech-
anisms do not properly handle the crash of senders.
Specifically, Unix Domain sockets, UDP, POSIX MQ,
IPC MQ and Barrelfish MP offer two variants of
the receive primitive, a blocking and a non-blocking
version. In the case of a sender crash, the blocking

version results in the receiver to be blocked as the
latter will wait for a message forever. The non-blocking
version of the primitive only informs the application
that there is no message to read. In this situation the
application cannot differentiate from a crashed sender
and a slow sender. Finally, both OMPI and KNEM
kill all the processes that were communicating with a
crashed sender. This makes them unusable for many
fault tolerance protocols. For instance, in a crash-fault
tolerant replication protocol, this would make all the
system collapse if only one replica crashes.

The third observation we can make is that the only
mechanisms that correctly handle crashes of receivers
processes are Unix domain sockets, TCP sockets, Pipes,
and Pipes + vmsplice(). With the remaining mech-
anisms, messages are not garbage collected. Conse-
quently, the resource consumption of the system in-
creases as the number of crashed receivers increases. On
the long term, this can reduce the amount of memory
available for other applications and cause collateral
failures (e.g., an application cannot start because it can
not create a new communication channel). Regarding
OMPI and KNEM, the behavior is similar with the crash
of a sender. It results on the killing of all the senders
that were communicating with the crashed receiver,
which is not acceptable when developing fault tolerance
protocols.

B. Performance

We study in this section the performance character-
istics of the different mechanisms. In term of perfor-
mance, we are interested by one-to-many communi-
cations, as they are extremely used in fault-tolerance
protocols. In the context of inter-core communication,
two kinds of operations are particularly costly. In the
case of big messages, i.e., more than 1kB, the message
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copy is the most costly operation. In the case of small
messages, i.e., up to 1kB, performing a system call is
the most costly operation. For instance, on the hardware
used in Section V, performing a system call is 14 times
more costly (in terms of CPU cycles) than invoking
a standard function. Table I shows the number of
message copies performed for sending one message to
N receivers (row 5), the number of message copies
performed by one receiver when receiving one message
(row 6), the number of system calls performed for
sending one message to N receivers (row 7), and the
number of system calls performed when receiving one
message (row 8).

The first observation we can make is that all the
mechanisms but Pipe + vmsplice() and KNEM
require N message copies for sending one message
to N receivers. Furthermore, all mechanisms but Pipe
+ vmsplice(), Barellfish MP and OMPI require
N system calls for sending one message to N re-
ceivers. As these operations are costly, if one-to-many
communications are often used in an application, the
latter will suffer unnecessary computational overhead.
Some mechanisms avoid this cost for one of the two
operations (either system calls or message copies) but
they all fail in optimizing them both. For instance, Pipe
+ vmsplice() and KNEM both do not require any
message copies for sending a message to N receivers.
However, this absence of message copies comes at
a cost: for each message, a receiver has to notify
the sender that it read the message, thus inducing
additional system calls. This explains why, using Pipe
+ vmsplice(), a sender requires 2*N system calls
for sending a message to N receivers, and a receiver
requires 2 system calls for receiving one message.
Similarly, KNEM requires N system calls to send a
message to N receivers.

Symmetrically, those mechanisms that optimize the
number of system calls required to send a message
to N receivers, i.e., user-level mechanisms, fail in
optimizing the number of message copies required to
send a message. Indeed, both Barrelfish MP and OMPI
use N message copies for sending one message to N
receivers.

C. Conclusion of the analysis

For reaching satisfactory robustness, a communica-
tion mechanism needs to protect sent messages and
data structures from faulty user-level mechanisms. This
can be done by storing messages and data structures
in the kernel level. Furthermore, the mechanism needs
to correctly handle the crash of senders (respectively,

receivers) by notifying the corresponding receivers (re-
spectively, senders), which allows the application to
efficiently handle the crash. From our analysis, only
TCP and Pipes offer this level of robustness. All other
mechanisms fail to correctly handle sender or receiver
crashes. Furthermore, user-level mechanisms fail in
protecting the integrity of messages and data structures
from faulty user-level processes. Finally, existing mech-
anisms fail in optimizing both the number of message
copies and system calls required to send a message to
N receivers, which necessarily impacts performance of
protocols that require one-to-many communications, as
further demonstrated in Section V.

IV. THE REICOM MECHANISM

REICoM (Robust and Efficient Inter-core Commu-
nication Mechanism) is a kernel-level communication
mechanism dedicated to one-to-many communications
between processes residing on the same host. REICoM
is robust, as faulty user-level processes cannot corrupt
messages or data structures used by the communication
mechanism, and as the crash of the sender or the
receiver is correctly handled. Moreover, REICoM im-
plements a one-to-many communication primitive that
allows sending a message to N receivers using only
one system call and one message copy. We start by
presenting an overview of REICoM in Section IV-A.
We then present its detailed design in Section IV-B.
Finally, we present its implementation and optimizations
in Section IV-C.

A. Overview

Using REICoM, processes communicate using so-
called communication channels. Each communication
channel is associated to a fixed set of senders and a
fixed set of receivers2. In order to be efficient, a specific
attention in the design has been given to minimize the
number of memory copies and of system calls that are
performed when sending and receiving messages. For
that purpose, a bitmap is associated to each message.
This bitmap contains one bit per receiver associated to
the communication channel. The bit at position i in the
bitmap is set to 1 when the message has been sent and
must be read by the ith process of the receiver set. It is
reset to 0 when the ith process has read it. Thanks to
this bitmap mechanism, only one system call is required
to send a message to a set of receivers. Moreover, each
sent message is only copied once from the sender user-
level buffer to REICoM’s data structures.

2New communication channels must be created when the number
of senders or the number of receivers change.
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The key characteristics of REICoM are presented in
Table I (in the grey column). Regarding robustness,
REICoM guarantees that faulty user-level processes can-
not corrupt the messages (row 1), nor the data structures
of the mechanism (row 2). This comes from the fact that
the communication channels and the mechanism data
structures are stored in the kernel memory, which is not
accessible by user-level processes. Furthermore, when a
process crashes, be it a sender or a receiver, REICoM
properly handles this crash (rows 3 and 4) by releasing
memory and prevents non-faulty processes to block.

Regarding performance, REICoM is designed in such
a way that a message sent to N receivers is copied only
once (row 5), and requires only one system call (row
7). Moreover, REICoM requires one message copy for
receiving a message (row 6), as well as one system call
(row 8).

Summarizing, together with TCP sockets and Pipes,
REICoM is the most robust communication mechanism.
Nevertheless, REICoM is much more efficient than TCP,
Pipes and all the other mechanisms for one-to-many
communications. These observations on performance
are confirmed by the experimental results presented in
SectionV.

B. Detailed design

The main structure of a communication channel is a
circular buffer which stores a set of messages. The max-
imal number of messages that can be stored in the buffer
and the maximal size of each message are specified
as a parameter of the communication channel creation
primitive and cannot be modified after its creation. Each
channel uses a variable, named next_send_entry,
which indicates to the senders the next entry in the cir-
cular buffer where to write a message. Multiple senders
can concurrently access the channel, thus this variable is
protected by a lock3. Similarly, each receiver maintains
a variable, named next_read_entry, which indi-
cates the next entry in the circular buffer where to read
a message. These two variables, next_send_entry
and next_read_entry, ensure that the messages are
written in and read from the channel in a FIFO order,
thus the application does not need to implement a high-
level mechanism to reorder the received messages. In
order to keep the mechanism simple and efficient, all
messages sent on a communication channel are intended
to all receivers associated to that channel. Indeed,
this avoids costly synchronization operations between
senders and receivers to notify the latter that they

3Note that the number of senders that can concurrently access the
channel is limited to the size of the channel, in order to prevent two
senders to write their message at the same location.

have messages to read. Consequently, a communication
channel must be created for each distinct set of receivers
that must receive the same messages.

Figure 1 depicts the steps performed to send and
receive a message using REICoM.

1) get & update
    next_send_entry

2) copy to
    kernel

2) copy to
    user3) update

    bitmap

next_send_entry

Receiver

copy(mr)

Sender
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copy(ms) mr
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a
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3) update
    bitmap

Communication channel

bitmap

circular buffer

Pointer Operation

next_read_entry

1) get & update
    next_read_entry

Figure 1: Robust and Efficient Inter-core Communica-
tion Mechanism overview.

Sending a message. To send a message, a sender
performs a system call, giving as parameters the
address and the length of the message. The system
call performs the following tasks: it first gets the
address of the next available entry in the channel, i.e,
next_send_entry, and updates this variable by
setting it to the next entry in the buffer in order to
allow other potential senders to simultaneously use the
channel. These two operations are atomically executed.
Then, the sender waits until the bitmap associated to
the entry it will use only contains null values. When
this is the case, it copies the content of the message to
be sent from the user-space memory of the sender to
the entry. The kernel-space memory is not accessible
by user-level processes. As a result, this memory copy
into the kernel-space memory of REICoM ensures that
the message cannot be corrupted by faulty user-level
processes. Then, it updates the bitmap associated with
the entry by setting all the bits to 1. Finally, it wakes
up the sleeping receivers if there are any.

Receiving a message. To receive a message, a receiver
performs a system call that works as follows. It first
gets the address of the next available message, which
is contained in the next_read_entry variable. It
then updates this variable. As messages are received in
a FIFO order, the next message to be received is the
message at the next position in the circular buffer. If
the bitmap associated to this entry indicates that there
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Function Operation
ioctl(fd, request, argp) Depending on the request it creates (CREAT), destroys (DESTR), gets the properties (GET) or modifies

(MODIF) a channel (identified by the file descriptor fd). argp is a structure that defines the properties of
the channel (max number of senders and receivers, max message size, channel size and channel name).
Returns -1 on error, 0 on success.

open(channame, flags) Open the channel channame with the access mode defined by flags (i.e., O RDONLY if opened by a
receiver or O WRONLY if opened by a sender). Returns a file descriptor which identifies the channel.

close(fd) Close the channel identified by the file descriptor fd.
write(fd, buf, count) Send the message starting at the address buf and of size count to the channel identified by fd. Returns

the number of bytes written or -1 on error.
read(fd, buf, count) Receive a message from the channel identified by fd and place it in the buffer at address buf of size

count. Returns the number of bytes read or -1 on error.

Table II: REICoM API.

is a message to receive (i.e., if its associated bit in the
bitmap is set to 1), then the receiver copies the message
to its private buffer, updates the bitmap, and wakes up
the waiting senders if there are any. Otherwise, if there
is no message to read, then it waits for a message at
this entry.

Handling senders and receivers crashes. Besides
storing all data structures and messages in kernel-space
in order to prevent faulty processes to corrupt them,
REICoM implements specific mechanisms to guarantee
robustness in the presence of crash faults. More pre-
cisely, when the kernel notifies the crash of a sender
or a receiver, REICoM performs a set of actions to
guarantee that no process will be blocked, and that
allocated memory will be properly released. The actions
performed by REICoM are the following ones. If the
process that crashed is a sender and if it was the
only sender connected to the channel, then all waiting
receivers are awaken and the receive operation returns
immediately. Consequently, receivers cannot be blocked
in the channel, waiting for new messages. If the process
that crashed is a receiver, then all the messages that
were intended to it are marked as read. This ensures
that messages that should have been received by the
crashed receiver will be garbage collected as soon as
they will have been read by other processes they are
intended to.

Handling unresponsive receivers. REICoM may suffer
from receivers that stopped reading messages without
crashing. To solve this issue, each message is associated
with a timer that the sender starts when sending a
message. This timer is stopped when the last reader has
read the corresponding message. If the timer expires,
the application is notified with the set of readers that
failed reading before the timeout. The application can
use this notification to either increase the value of the
timeout or to kill the corresponding readers.

C. Implementation and optimizations

We have implemented REICoM as a Linux kernel
module. The benefits of this approach are that it is easy
to implement, debug and deploy. Indeed, there is no
need to compile the whole kernel and to restart the
machine in order to use it.

We have used several data structures and interfaces
provided by the Linux kernel. Table II shows the API
of REICoM. These methods are traditional methods
from the Linux kernel. Note that a process can also use
fcntl() in order to set the send and receive operations
in non-blocking mode, and select() in order to wait
for a message on multiple channels at once. In addition,
we have used the kernel wait queues to make processes
wait and to wake them up. More precisely when a
process needs to wait, it adds itself to the queue, sets its
current state to waiting, and sleeps. Waking up a process
is easy: it consists in removing the process from the wait
queue and in setting its state to running, so that it can be
scheduled again. Moreover, the next_send_entry
variable is protected by a spinlock, i.e., a lock on which
the processes busy-wait, rather than sleep. We chose to
use spinlocks because it is more efficient to wait on a
spinlock than on a traditional, sleeping lock.

In order to increase the efficiency of REICoM,
we have implemented two cache-related optimizations.
First, REICoM structures are aligned on a cache line4.
Second, REICoM structures are padded, i.e., extra bytes
are added at the end of the structures, so as the size
of each structure becomes a multiple of a cache line
size [13]. The advantage of padding is that it prevents
false sharing. False sharing occurs when several pro-
cesses access different unrelated data that fit in the same
cache line. Although they do not access the same data,
the cache coherency mechanism will invalid the entire
line each time a single bit is modified, which decreases
performance.

4Barrelfish MP also uses this optimization.
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V. PERFORMANCE COMPARISON

In this section, we present a performance analysis of
REICoM. We compare its performance to that achieved
by the state-of-the-art mechanisms presented in Sec-
tion III. We start by a description of the hardware and
software settings we used. Then, we evaluate the mech-
anisms by implementing a consensus and a snapshot
protocol.

A. Hardware and software settings

We run our experiments on an HP Proliant DL165 G7
machine that has two AMD Opteron 6164HE processors
clocked at 1.7GHz and 48GB of RAM. Each processor
contains two sets of six cores that share a L3 cache
of 6MB. Moreover, each core has private L1 and L2
caches of 64kB and 512kB, respectively. We use a Linux
kernel version 3.0.0 and profiled the mechanisms with
Oprofile [12] and LIKWID [15]. We have evaluated
the Open MPI v1.5.4 library, to which we refer by
OMPI, and the version 0.9.8 of KNEM. We configure
all the communication mechanisms in order to obtain
the best performance for each of them. Finally, we have
implemented Barrelfish MP in Linux in user-space from
the Barrelfish OS source code5.

B. Consensus protocol: PaxosInside

Guerraoui and Yabandeh have recently proposed Pax-
osInside [8], an adaptation of the Paxos protocol [11] for
manycore machines. Similarly to Paxos, the PaxosInside
protocol distinguishes three roles for nodes taking part
in the protocol: proposer, acceptor and learner. An
important difference with Paxos is that PaxosInside
relies on a single active acceptor, which is replaced by
a backup acceptor when a failure occurs. For every con-
sensus, PaxosInside performs several rounds of one-to-
one and one-to-many communications. More precisely,
assuming that there are l learners in the system, every
consensus requires 2 + l one-to-one message exchanges
and 1 one-to-many message exchange.

In the presented experiments, we implement a version
of PaxosInside per communication mechanism (the dif-
ference between these versions being in how they send
and receive messages) and deploy it with one proposer,
one acceptor, and three learners (which allows tolerating
the failure of exactly one learner). The proposer issues
requests for consensus in an open loop, i.e., the proposer
does not wait for a response before proposing a new
value. We wait for 100,000 accepted proposals and
measure the peak throughput at which consensus are
performed as a function of the request size (from 64B

5http://www.barrelfish.org

to 1MB). The results are the average over three runs,
for which the standard deviation is less than 1% and is
thus not depicted.

Figures 2 and 3 present, respectively, the throughput
of all state-of-the-art communication mechanisms for
small and big message size, in addition to the cor-
responding throughput improvement of REICoM over
these mechanisms. As shown in both figures, REICoM
provides a better throughput than the state-of-the-art
communication mechanisms for all message sizes. In
particular, we observe in Figure 3 that compared to the
most robust protocols, i.e., TCP and Pipes, REICoM
throughput improvement ranges between 69% to 920%
for TCP and between 29% and 190% for Pipes. The
minimal throughput improvement reached by REICoM
compared to all protocols and all message sizes is
9%, when compared to Pipe + vmsplice() for mes-
sages of 1MB. Moreover, we observe that the maximal
throughput improvement reached by REICoM compared
to all protocols and all message sizes is 1389% when
compared with KNEM.

The two design points responsible for the better per-
formance are as expected the small number of message
copies and system call performed by REICoM. To
assess this, we ran an experiment where the message
was copied N times in the channel and found that
the throughput of the protocol decreased by 21% at
10kB. Similarly, we performed another experiment with
messages of 64B, where the sender was calling the send
primitive N times to send a message. We observed that
the throughput has dropped by 46%.

More generally, we observe in Figure 2 that the
throughout of the protocol using all the mechanisms
decreases when the message size increases. This is
due to the fact that contrary to small messages, large
messages can not be kept for long enough in the cache,
which forces readers to fetch them in memory. For
instance, we monitored the number of cache misses at
the L1 cache when running the two experiments with
messages of 10kB and 100kB. We observed that the
cache miss rate increases by 439% in the experiment
with messages of 100kB compared to the experiment
with messages of 10kB.

C. Snapshot protocol

The second protocol we use to evaluate REICoM
is a snapshot protocol. The second protocol we use
to evaluate REICoM is the snapshot protocol proposed
by Manivannan and Singhal [14]. Amongst the existing
snapshot protocols (e.g., [10]), this protocol is interest-
ing due to the fact that it is lightweight: processes do not
need to be synchronized and the dependency between
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Figure 3: Agreement protocol: Throughput improve-
ment of REICoM over state-of-the-art communication
mechanisms

the exchanged messages does not need to be tracked,
e.g., using vector clocks. Moreover, it is very efficient
because all the messages can be piggy-backed to the
messages exchanged by the checkpointed application.
It works as follows: to gather a snapshot, a node sends
a message to every other nodes in the system. Upon
reception of such a message, the nodes send back their
latest checkpoint to the initiator of the snapshot. The
snapshot is finished once the initiator has received a
checkpoint for every node in the system. This protocol
involves 1 one-to-many and n−1 one-to-one exchanges
of messages6, where n is the number of nodes taking

6The communication from the initiator node to himself is handled
internally by the application.

part in the protocol.
In the presented experiments, there is one node that

issues 100,000 requests for snapshots to n − 1 other
nodes in a closed-loop, meaning that it only issues
a new snapshot request when the previous one has
completed. We vary the number of nodes, from 2 to
24. The size of a snapshot request is always 128B
and the size of the checkpoints is fixed to 4kB. This
size is representative of the quantity of information
checkpointed by traditional applications. We measure
the time required to complete a snapshot, i.e., the time
elapsed between the sending of the snapshot request and
the reception of the last checkpoint. Results are all the
average over three runs. The standard deviation, of less
than 1%, is not shown.

Figures 4a and 4b present, respectively, the snap-
shot completion time and the snapshot completion
time increase of the state-of-the-art mechanisms over
REICoM. We observe in both figures that for small
number of nodes, i.e., from 1 to 5, only OMPI exhibits
better performance than REICoM. Furthermore with this
number of nodes, REICoM slightly outperforms IPC
MQ, Posix MQ, Barrelfish MP, Pipes, and Pipes +
vmsplice() (less than 50% difference) and largely
outperforms the remaining mechanisms (from 50% to
140% difference). From 5 nodes onward, REICoM
consistently outperforms all the existing mechanisms. In
particular, compared to TCP and Pipes, which are the
mechanisms that provide the same level of robustness
as REICoM, we observe that the snapshot completion
time improvement of REICoM ranges between 120%
and 300% for TCP and 9% and 140% for Pipes.

More generally, we observe from Figure 4a that

8



 0

 50

 100

 150

 200

 250

 300

 350

 400

 5  10  15  20

S
n
a
p
s
h
o
t 
c
o
m

p
le

ti
o
n
 t
im

e
 (

m
ic

ro
s
e
c
o
n
d
s
)

Number of nodes

Unix domain
TCP
UDP

IPC MQ
POSIX MQ

Pipe
Pipe + vmsplice()

Barrelfish MP
OMPI

KNEM
REICoM

(a) Snapshot completion time of the state-of-the-art mechanisms and
REICoM.

-50

 0

 50

 100

 150

 200

 250

 300

 350

 400

 5  10  15  20

S
n
a
p
s
h
o
t 
c
o
m

p
le

ti
o
n
 t
im

e
 i
n
c
re

a
s
e
 (

%
)

Number of nodes

Unix domain
TCP
UDP

IPC MQ
POSIX MQ

Pipe
Pipe + vmsplice()

Barrelfish MP
OMPI

KNEM

(b) Snapshot completion time increase of the state-of-the-art mecha-
nisms compared to REICoM.

Figure 4: Snapshot protocol.

the completion time of all protocols increases with
the increase of the number of nodes involved in the
checkpointing protocol. This is due to the fact that
the snapshot initiator needs to receive more messages
in order to complete a snapshot. Since it is a mono-
threaded process, it reads sequentially the messages
from the different nodes, which takes a longer time.

Finally, we observe that REICoM scales better than
the other mechanisms. Indeed, between 2 and 24 nodes,
the latency increases by x7, while it increases by x7.5
for Barrelfish MP and up to x15 for OMPI.

VI. RELATED WORK

In 2003, Immich et al. have presented a study of
five inter-process communication mechanisms [9]. More
precisely, they have evaluated pipes, named pipes, IPC
message queue, shared memory with semaphores and
Unix domain sockets on four versions of Linux and
two of FreeBSD. They considered a micro-benchmark,
with a producer/consumer scheme, for messages ranging
from 64B to 4608B. The main focus of this work was
to study the impact of the operating system on the
performance of existing inter-process communication
mechanisms. Wright et al. [16] conducted a perfor-
mance analysis of pipes, Unix Domain sockets and TCP
sockets on different manycore platforms. The authors
conducted their experiments on different hardware, but
focused on micro-benchmarks with only one sender and
one receiver and large messages (ranging from 1MB to
100MB). Our performance analysis of existing inter-
process communication mechanisms is complementary
to the above mentioned studies. None of the above
works analyzes the robustness of existing inter-process

communication mechanisms and how they behave on
manycore machines when they are used for one-to-
many communications, which has been the focus of our
study. The experimental operating system Singularity
OS provides an efficient, zero-copy, communication
mechanism [5]. To achieve this goal, it relies heavily
on the compiler and the runtime. In particular, static
verifications ensure that a process does not access the
memory area of a message after it has been sent. The
communication mechanism used in Singularity OS is
robust. Indeed, the messages and the data structures
cannot be corrupted, the crashes of the processes are
correctly handled by the mechanism, and it provides a
FIFO, loss-less channel between two endpoints. How-
ever, this comes at a non-negligible cost: the operating
system and the applications have to be developed in
a special language, namely Sing#. Consequently, this
mechanism cannot be used by legacy applications run-
ning on Linux platforms. In contrast, REICoM provides
a standard interface (leveraging well-known system
calls) and can thus be used in existing systems without
modifications.

VII. CONCLUSION

In this paper, we have studied ten existing com-
munication mechanisms for communications between
processes residing on the same machines. Our study has
shown that existing mechanisms are either not robust,
or not efficient. We have thus proposed REICoM, a
new communication mechanism. This mechanism is
robust: it tolerates the crash of both receivers and
senders, and protects against faulty processes trying that
could corrupt data structures or messages. Moreover,
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REICoM is efficient. In particular, it provides a one-
to-many communication primitive requiring only one
message copy and one system call. We have evalu-
ated the different communication mechanisms using
two distributed algorithms: PaxosInside — a consensus
algorithm for manycore machines —, and a snapshot
algorithm. These two applications use a minority of
one-to-many communications (five one-to-one and one
one-to-many communication for PaxosInside, one one-
to-many communications and up to twenty-three one-
to-one communications for the snapshot protocol). In
both these applications using an optimized one-to-many
communication mechanism makes a tremendous differ-
ence in the performance of the whole protocol. Indeed,
if we specifically look at the two mechanisms that
are as robust as REICoM, we conclude that REICoM
outperforms them in the two benchmarks by up to 920%
and 300% for TCP and 190% and 140% for Pipes in
the two benchmarks, respectively.
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