
0

The Next 700 BFT Protocols

PIERRE-LOUIS AUBLIN, INSA Lyon
RACHID GUERRAOUI, EPFL
NIKOLA KNEŽEVIĆ, IBM Research Zurich
VIVIEN QUEMA, Grenoble INP
MARKO VUKOLIĆ, Eurécom

We present Abstract (ABortable STate mAChine replicaTion), a new abstraction for designing and recon-
figuring generalized replicated state machines that are, unlike traditional state machines, allowed to abort
executing a client’s request if “something goes wrong”.

Abstract can be used to considerably simplify the incremental development of efficient Byzantine fault-
tolerant state machine replication (BFT) protocols that are notorious for being difficult to develop. In short,
we treat a BFT protocol as a composition of Abstract instances. Each instance is developed and analyzed
independently, and optimized for specific system conditions. We illustrate the power of Abstract through
several interesting examples.

We first show how Abstract can yield benefits of a state-of-the-art BFT protocol in a less painful and error-
prone manner. Namely, we develop AZyzzyva, a new protocol that mimics the celebrated best-case behavior
of Zyzzyva using less than 35% of the Zyzzyva code. To cover worst-case situations, our abstraction enables
to use in AZyzzyva any existing BFT protocol.

We then present Aliph, a new BFT protocol that outperforms previous BFT protocols both in terms of
latency (by up to 360%) and throughput (by up to 30%). Finally, we present R-Aliph, an implementation
of Aliph that is robust, i.e., whose performance degrades gracefully in presence of Byzantine replicas and
Byzantine clients.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed Systems

General Terms: Design, Algorithms, Performance, Fault-tolerance

Additional Key Words and Phrases: Abstract, Byzantine Fault-Tolerance, composability, optimization, ro-
bustness

ACM Reference Format:
Aublin, P.-L., Guerraoui, R., Knežević, N., Quéma, V., and Vukolić, M, 2014. The Next 700 BFT Protocols.
ACM Trans. Comput. Syst. 0, 0, Article 0 (2014), 46 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
State machine replication (SMR) is a software technique for tolerating failures using
commodity hardware. The critical service to be made fault-tolerant is modeled by a
state machine. Several, possibly different, copies of the state machine are then placed
on different nodes. Clients of the service access the replicas through a SMR protocol
which ensures that, despite contention and failures, replicas perform client requests
in the same order.

Two objectives underly the design and implementation of a SMR protocol: robustness
and performance. Robustness conveys the ability to ensure availability (liveness) and

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c⃝ 2014 ACM 0734-2071/2014/-ART0 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

0:2 P.L. Aublin et al.

one-copy semantics (safety) despite failures and asynchrony. On the other hand, per-
formance measures the time it takes to respond to a request (latency) and the number
of requests that can be processed per time unit (throughput). The most robust proto-
cols are those that tolerate (a) arbitrarily large periods of asynchrony, during which
communication delays and process relative speeds are unbounded, and (b) arbitrary
(Byzantine) failures of any client, as well as up to one-third of the replicas (this is
the theoretical lower bound [Toueg 1984; Lamport 2003]). These are called Byzantine
Fault Tolerant SMR protocols, or simply BFT protocols,1 e.g., PBFT, QU, HQ, Zyzzyva,
Spinning, Prime, and Aaardvark [Castro and Liskov 2002; Abd-El-Malek et al. 2005;
Cowling et al. 2006; Kotla et al. 2010; Veronese et al. 2009; Amir et al. 2011; Clement
et al. 2009]. The ultimate goal of the designer of a BFT protocol is not only to provide
robustness to Byzantine faults and asynchrony, but also to exhibit comparable perfor-
mance to a non-replicated server under “common” circumstances that are considered
the most frequent in practice. The notion of “common” circumstance might depend on
the application and underlying network, but it usually means network synchrony, rare
failures, and sometimes also the absence of contention.

Not surprisingly, even under the same notion of “common” case, there is no “one size
that fits all” BFT protocol. According to our own experience, the performance differ-
ences among the protocols can be heavily impacted by the actual network, the size of
messages, the very nature of the “common” case (e.g, contention or not), the actual
number of clients, the total number of replicas, as well as the cost of the cryptographic
libraries being used. This echoes [Singh et al. 2008] which concluded for instance that
“PBFT [Castro and Liskov 2002] offers more predictable performance and scales better
with payload size compared to Zyzzyva [Kotla et al. 2010]; in contrast, Zyzzyva offers
greater absolute throughput in wider-area, lossy networks”. In fact, besides all BFT
protocols mentioned above, there are good reasons to believe that we could design new
protocols outperforming all others under specific circumstances. We do indeed present
examples of such protocols in this paper.

To deploy a BFT solution, a system designer will hence certainly be tempted to adapt
a state-of-the-art BFT protocol to the specific application/network setting, and possi-
bly keep adapting it whenever the setting changes. But this can rapidly turn into a
nightmare. All protocol implementations we looked at involve around 20.000 lines of
(non-trivial) C++ code, e.g., PBFT and Zyzzyva. Any change to an existing protocol, al-
though sometimes algorithmically intuitive, is very painful. Moreover, the changes of
the protocol needed to optimize for the “common” case have sometimes strong impacts
on the parts of the protocol used in other cases (e.g., “view-change” in Zyzzyva). Finally,
proving that a BFT protocol is correct is notoriously difficult: the only complete proof
of a BFT protocol we knew of is that of PBFT and it involves 35 pages.2 This difficulty,
together with the impossibility of exhaustively testing distributed protocols [Chandra
et al. 2007] would rather plead for never changing a protocol that was widely tested,
e.g., PBFT.

We propose in this paper a way to have the cake and eat a big chunk of it. We
present Abstract (ABortable STate mAChine replicaTion), a new abstraction for de-
signing and reconfiguring generalized state machines that look like traditional state
machines with one exception: they may sometimes abort a client’s request. Follow-
ing the divide-and-conquer principle, we then use Abstract to build BFT protocols as

1Whereas BFT generally refers to a broader set of Byzantine fault tolerant techniques, in this paper, that
focuses on BFT state-machine replication (SMR), we use BFT as a shorthand for BFT SMR.
2It took Roberto De Prisco a PhD (MIT) to formally (using IOA) prove the correctness of a state machine
protocol that does not even deal with Byzantine faults.

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

The Next 700 BFT Protocols 0:3

compositions of instances of our abstraction, each instance targeted and optimized for
specific system conditions.

The progress condition under which an Abstract instance should not abort is a
generic parameter.3 An extreme instance of Abstract is one that never aborts: this is
exactly a traditional (replicated) state machine. Interesting instances are “weaker”
ones, in which an abort is allowed, e.g., if there is asynchrony or failures (or even
contention). When such an instance aborts a client request, it returns a request his-
tory that is used by the client (proxy) to “recover” by switching to another instance of
Abstract, e.g., one with a stronger progress condition. This new instance will commit
subsequent requests until it itself aborts. This paves the path to composability and
flexibility of BFT protocol design using Abstract. Indeed, the composition of any two
Abstract instances is idempotent, yielding another Abstract instance. Hence, and as we
will illustrate in the paper, the development (design, test, proof and implementation)
of a BFT protocol boils down to:

— Developing individual Byzantine fault-tolerant Abstract instances. This is usually
way much simpler than tolerating Byzantine faults within a full-fledged, monolithic
state machine replication protocol and allows for very effective schemes. A single
Abstract instance can be crafted solely with its progress in mind, irrespective of
other instances.

— Implementing a switching mechanism to glue an together different Abstract in-
stances. This typically involves devising a library that exposes the abort subpro-
tocol of the aborting Abstract instance to the next Abstract instance. In this way, the
next Abstract instance is initialized using abort indications of the aborting Abstract
instance.

— Ensuring that a request is not aborted by all Abstract instances. This can be made
very simple by reusing, as a black-box, an existing BFT protocol within one of the
instances, without indulging into complex modifications.

To demonstrate the benefits of Abstract, we present three BFT protocols, each we
believe is interesting in its own right:

(1) AZyzzyva, a protocol that illustrates the ability of using Abstract to significantly
ease the development of BFT protocols. AZyzzyva is the composition of two Ab-
stract instances: (i) ZLight, which mimics Zyzzyva [Kotla et al. 2010] when there
are no asynchrony or failures, and (ii) Backup, which handles the periods with
asynchrony/failures by reusing, as a black-box, a legacy BFT protocol. We leveraged
PBFT which was widely tested. The code line count to obtain AZyzzyva is, conser-
vatively, around one third of that of Zyzzyva, while keeping the same optimizations
(such as batching and read-only request handling). In some sense, had Abstract been
identified several years ago, the designers of Zyzzyva would have had a much easier
task devising a correct protocol exhibiting the performance they were seeking.

(2) Aliph, a protocol that demonstrates the ability of using Abstract to develop novel
efficient BFT protocols. Aliph achieves up to 30% lower latency and up to 360%
higher throughput than state-of-the-art protocols. Aliph uses, besides the Backup
instance used in AZyzzyva (to handle the cases with asynchrony/failures), two new
instances: (i) Quorum, targeted for system conditions that do not involve asyn-
chrony/failures/contention, and (ii) Chain, targeted for high-contention conditions
without asynchrony/failures. Quorum has a very low-latency (like e.g., [Brasileiro

3Abstract can be viewed as a virtual type; each specification of the progress condition defines a concrete type.
These genericity ideas date back to the seminal paper of Landin: The Next 700 Programming Languages
(CACM, March 1966).

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

0:4 P.L. Aublin et al.

et al. 2001; Abd-El-Malek et al. 2005; Dobre and Suri 2006]) and it makes Aliph
the first BFT protocol to achieve a latency of only 2 message delays with as few as
3f + 1 servers. Chain implements a pipeline message-pattern, and relies on a novel
authentication technique. It makes Aliph the first BFT protocol with a number of
MAC operations at the bottleneck server that tends to 1 in the absence of asyn-
chrony/failures. This contradicts the claim that the lower bound is 2 [Kotla et al.
2010]. Interestingly, each of Quorum and Chain could be developed independently
and required less than 35% of the code needed to develop state-of-the-art BFT pro-
tocols4.

(3) R-Aliph, a protocol, based on Aliph, that achieves about the same performance as
Aliph in the absence of faults, and that performs significantly better than Aliph
under attack, i.e., when Byzantine replicas and Byzantine clients act maliciously in
order to decrease the performance of the system. Similarly as Aliph, R-Aliph uses
the Quorum and Chain protocols when there are no attacks. In order to achieve good
performance under attack, R-Aliph monitors the progress of Chain and Quorum,
implements various mechanisms to bound the time required to switch from one
protocol to another protocol, and uses the Aardvark protocol [Clement et al. 2009]
as Backup instance. Aardvark is a BFT protocol that has been specifically designed
to sustain good performance despite attacks.

The rest of the paper is organized as follows. Section 2 describes the system model.
Section 3 presents Abstract. Afterwards, we describe our new BFT protocols: AZyzzyva
in Section 4, Aliph in Section 5, and R-Aliph in Section 6. Section 7 discusses the
related work. Finally, Section 8 discusses future work and concludes the paper. Cor-
rectness arguments and proofs of our implementations are postponed to Appendix A.

2. SYSTEM MODEL
We assume a message-passing distributed system using a fully connected network
among processes: clients and servers. The links between processes are asynchronous
and unreliable: messages may be delayed or dropped (we speak of link failures). How-
ever, we assume fair-loss links: a message sent an infinite number of times between
two correct processes will be eventually received. Processes are Byzantine fault-prone;
processes that do not fail are said to be correct. A process is called benign if it is cor-
rect or if it fails by simply crashing. In our algorithms, we assume that any number
of clients and up to f out of n = 3f + 1 servers can be Byzantine. We assume a strong
adversary that can coordinate faulty nodes; however, we assume that the adversary
cannot violate cryptographic techniques like collision-resistant hashing, message au-
thentication codes (MACs), and signatures.

We further assume that during synchronous periods there are no link failures, i.e.,
that correct processes can communicate and process messages in a timely manner.
More specifically, we assume that during synchronous periods: (i) any message m sent
between two correct processes is delivered within a bounded delay ∆c, (ii) any mes-
sage received by a correct process is processed (including possible application-level
execution) within a bounded delay ∆p, and (iii) ∆c and ∆p are known to all correct
processes. Intuitively, bounds ∆c and ∆p only serve to conveniently define timers that
are assumed not to expire in the “common” case; our BFT protocol constructions from
Abstract work correctly in the traditional partially synchronous model [Dwork et al.
1988]. We also denote ∆p +∆c as ∆.

4Our code counts are in fact conservative since they do not discount for the libraries shared between ZLight,
Quorum and Chain, which amount to about 10% of a state-of-the-art BFT protocol.

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

The Next 700 BFT Protocols 0:5

Finally, we declare contention in an Abstract instance whenever there are two con-
current requests such that both requests are invoked but not yet committed/aborted.

3. ABSTRACT
In this section, we present our new approach for the design and reconfiguration of
abortable state machine replication protocols. We start by an overview of Abstract, the
new abstraction we propose. Then, we illustrate the way Abstract can be used to design
BFT protocols. Finally, we provide the formal specification of Abstract and state and
prove the Abstract composability theorem.

3.1. Overview
Abstract has been devised with Byzantine faults in mind, but it is not restricted to
them. In fact, Abstract specification does not explicitly refer to any specific kind of
faults.

Individually, each Abstract instance behaves just like a (replicated) state machine: it
commits client’s requests, returning state machine dependent replies to clients. Each
reply is a function of a sequence of clients’ requests called a commit history [van Re-
nesse and Guerraoui 2010]. Like in traditional state machine replication [Schneider
1990], commit histories are totally ordered — we refer to this property of Abstract as
Commit Order. However, an Abstract instance needs to commit a request only if cer-
tain Progress conditions are met; otherwise, an Abstract instance may abort a client’s
request. These Progress conditions, determined by the developer of the particular Ab-
stract instance, might depend on the design goals and the environment in which a par-
ticular instance is to be deployed. Intuitively, designing a variant of a replicated state
machine, in particular a Byzantine fault tolerant one, that needs to make progress
only when certain conditions are met, is often considerably simpler than designing a
full-fledged replicated state machine that makes progress under all system conditions.

A single Abstract instance is not particularly interesting on its own. That is why the
Abstract framework comes with a mechanism and formalism for reconfiguring Abstract
instances. Abstract reconfiguration resembles traditional state machine reconfigura-
tion [Lamport et al. 2010; Birman et al. 2010], with the difference that its properties
are tailored for reconfiguration of abortable state machines rather than full-fledged,
traditional ones. In a sense, Abstract provides a rigorous framework of reconfiguration
as an object, using shared-memory style.

More specifically, for the sake of reconfiguration, every Abstract instance has a
unique identifier (called instance number) i; this instance number abstracts away a set
(and a number) of replicas implementing a given instance, the protocol used, possible
protocol internals such as a protocol leader, etc. For example, in the BFT protocols that
we present in this paper, Abstract instance number i captures the protocol used and its
Progress conditions. Following the classical state machine reconfiguration approach
[Lamport et al. 2010; Birman et al. 2010], Abstract reconfiguration can be divided into
three steps: (i) stopping the current Abstract instance, (ii) choosing the next Abstract
instance, and (iii) combining the request sequences (i.e., commit histories) of separate
Abstract instances into a single sequence.

(i) An Abstract instance is automatically stopped as soon as it aborts a single request.
This is captured by the Abstract Abort Order property. Namely, when a client’s
request aborts, along the abort indication, the Abstract instance also returns a
sequence of requests called abort history; The Abort Order property mandates
that each abort history of a given Abstract instance i contains as its prefix every
commit history of instance i (possibly along with some uncommitted requests). In
a sense, Abstract Abort Order allows a certain request index to become a stopping-

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

0:6 P.L. Aublin et al.

index — any attempt to order requests higher than this index is guaranteed to
abort, effectively causing a given Abstract instance to “stop”. As we will see later
on, an abort history is used as an input to the next Abstract instance.

(ii) Within an abort indication, an aborting Abstract instance i also returns an identi-
fier of the next instance next(i) — we say instance i switches to instance next(i).
Like in the reconfiguration of classical state machines [Lamport et al. 2010], the
Abstract switching requires consensus on the next Abstract instance; hence, we re-
quire next to be a function, i.e., to have next(i) denote the same instance across all
abort indications of instance i. Moreover, since we stop aborting instances and to
avoid “switching loops”, we require monotonically increasing instance numbers,
i.e., for every instance i, next(i) > i.
In the context of the protocols presented in this paper, we consider next(i) to be
a pre-determined function (e.g., known to servers implementing a given Abstract
instance); we talk about deterministic or static switching. Concretely, in our pro-
tocols, we simply fix next(i) = i + 1. However, this is not required by our specifi-
cation; next(i) can be computed “on-the-fly” by an Abstract implementation (e.g.,
depending on the current workload, or possible failures or asynchrony). In this
case, we talk about dynamic switching; this is out of the scope of this paper.

(iii) Finally, “state transfer”, i.e., migration of histories between Abstract instances,
reveals critical Abstract subtleties. In short, the client uses the abort history h
of an aborting Abstract instance i to invoke next(i); in the context of next(i), h
is called an init history. Roughly speaking, init histories are used to initialize
instance next(i), before next(i) starts committing/aborting clients’ requests.
However, Abstract mandates no explicit agreement on the initial state (i.e., initial
sequence of requests) of the next instance next(i). More specifically, there is no
agreement across abort histories of an aborting instance i. Abort histories need
only contain commit histories as their prefix — there is no mutual order imposed
on any two abort histories, which are free to contain arbitrary uncommitted re-
quests at their tails.
Similarly, in the context of next(i), no specific init history (recall that init his-
tory of instance next(i) is an abort history of instance i) needs to be a prefix of
commit/abort histories of next(i). Abstract only requires implicit agreement on the
initial sequence of requests of next(i). This is captured by the Abstract Init Order
property which mandates that, for any Abstract instance, a longest common prefix
of init histories is a prefix of any commit/abort history. Intuitively, since every
commit history of an aborting instance i is contained as a prefix in every abort
history of i, we do not need a stronger property than Init Order to maintain total
order of commit histories across Abstract instances.
Such weak, implicit, ordering of abort/init histories enables very efficient Abstract
implementations. Since no explicit agreement is required neither across abort his-
tories, nor on the “first” init history, Abstract implementations do not need to solve
consensus outside Progress conditions. In fact, and as our Abstract implementa-
tions (ZLight, Quorum and Chain) exemplify, some Abstract specifications with
“weak” Progress can be implemented in the asynchronous model despite Byzan-
tine faults, circumventing the FLP impossibility result [Fischer et al. 1985].

With such a design, our Abstract framework has the following appealing properties
that simplify the modular and incremental design of state machine replication, and
BFT protocols in particular:

(1) Switching between instances is idempotent: the composition of two Abstract in-
stances yields another Abstract instance.

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

The Next 700 BFT Protocols 0:7

(2) A correct implementation of an Abstract instance always preserves the safety of a
state machine, i.e., the total order across committed requests [Schneider 1990; van
Renesse and Guerraoui 2010]. This extends to any composition of Abstract instances.

(3) A (replicated) state machine is nothing but a special Abstract instance — one that
never aborts.

Consequently, the designer of a state machine replication (e.g., BFT) protocol has
only to make sure that: (a) individual Abstract implementations are correct, irrespec-
tively of each other, and (b) the composition of the chosen instances is live: i.e., that
every request will eventually be committed.

3.2. Illustration

Abstract

instance

#1

Client

A

request #1

commit #1

request #50

abort #50, hist_1, next=2

commit #50

Abstract

instance

#2

request #50, hist_1, next=2

commit #51

request #51, hist_2, next=2

Client

B

request #51

abort #51, hist_2, next=2

Client

C

abort #130, hist_3, next=3

request #130

Abstract

instance

#3

commit #130

request #130, hist_3, next=3

commit #131

request #131

.

.

.

.

.

.

Fig. 1. Abstract operating principle.

Figure 1 depicts a possible run of a BFT protocol built using Abstract. As we have
seen before, to preserve consistency, Abstract properties ensure that, at any point in
time, only one Abstract instance may commit requests. We say that this instance is ac-
tive. Client A starts sending requests to the first Abstract instance. The latter commits
requests #1 to #49, aborts request #50 and stops committing further requests. Abstract
appends to the abort indication an (unforgeable) history (hist 1) and the information
about the next Abstract instance to be used (next = 2). Concurrently with request #50,
client B sends request #51 to the first Abstract instance. Similarly to request #50, re-
quest #51 aborts and B obtains an (unforgeable) history hist 2. This abort indication
contains the same, previously committed requests #1 to #49, just like history hist 1,
but appended information on aborted requests differs.

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

0:8 P.L. Aublin et al.

Client A then sends to the new Abstract instance both its uncommitted request (#50)
and the history returned by the first Abstract instance. Instance #2 gets initialized
with the given history and commits request #50. Client B subsequently sends request
#51 together with the history to the second Abstract instance. The latter being al-
ready initialized, it simply ignores the history and commits request #51. The second
abstract instance then commits the subsequent requests up to request #130 which it
aborts. Client B uses the history returned by the second abstract instance to initialize
the third abstract instance. The latter commits request #130. Finally, Client C, sends
request #131 to the third instance, that commits it. Note that unlike Client B, Client C
directly accesses the currently active instance. This is possible if Client C knows which
instance is active, or if all three Abstract instances are implemented over the same set
of replicas: replicas can then, for example, ‘tunnel’ the request to the active instance.

3.3. Specification
In this section, we provide the specification of Abstract. We model every Abstract in-
stance as a concurrent shared object, where every instance has a unique identifier
i ∈ N (a natural number). The type (i.e., the set of possible values) of every Abstract in-
stance is a history; a history h ∈ H, where H = REQ∗, is a (possibly empty) sequence
of requests req ∈ REQ, where REQ is a set of all possible requests. More specifically,
REQ = C ×CMD×N, where C is the set of clients’ ids, CMD is the set of all possible
state machine commands, whereas the third element (a natural number) in a request
is called request identifier.

Abstract i exports one operation: Invokei(req, hI), where req ∈ REQ is a client’s re-
quest, and hI ∈ H, an (optional) sequence of requests called init history; we say the
client invokes request req (with init history hI). By convention, when i = 1, the invoca-
tion never contains an init history.

On the other hand, Abstract instance i returns one of the possible two indications to
the client invoking req (with hI):

(1) Commiti(req, rep(hreq)), where hreq ∈ H is a sequence of requests called commit
history (of i) that contains req. Here, rep(hreq) represents the output function of the
(replicated) state machine; basically, rep(hreq) represents the replies that the state
machine outputs to clients.

(2) Aborti(req, hA, next(i)), where hA ∈ H is a sequence of requests called abort history
(of i) and next is a function that returns an integer, where next(i) > i.

We say that a client commits or aborts a request req, respectively. In the case of an
abort, we also say that instance Abstract i switches to instance next(i). Intuitively, and
as detailed below, abort histories of Abstract instance i are prefixed by commit histories
of i and are used as init histories in instance next(i).

We model an execution of a concurrent system composed of the set of Abstract in-
stances and clients using traces.5 A trace is a finite sequence of Abstract invocation
and indication events. A subtrace of a trace T is a subsequence of the events of T . An
indication matches an invocation if their Abstract instance, request and the client ids
are the same. A (sub)trace T is sequential if it starts with an invocation event and each
invocation (except possibly the last) is immediately followed by a matching indication.
An instance subtrace, denoted T |i, of a trace T is the subsequence of all events in T
pertaining to Abstract instance i. Similarly, a client subtrace, denoted T |c, of a trace
T is the subsequence of all events in T pertaining to client c. Client c is well-formed
in trace T if client subtrace T |c of T is sequential and all requests invoked by c in T

5Execution traces are sometimes also called execution histories (see e.g., [Herlihy and Wing 1990]). We use
the term traces to avoid the possible confusion with Abstract commit/abort/init histories.

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

The Next 700 BFT Protocols 0:9

are unique (i.e., given two requests req0 = ⟨c, cmd0, rid0⟩ and req1 = ⟨c, cmd1, rid1⟩, we
have cmd0 ̸= cmd1 or rid0 ̸= rid1). We assume all correct clients to be well-formed in
all traces.

Given trace T and an invocation/indication event ev ∈ T , a history h is called a valid
init history (VIH) for Abstract instance i at event ev, if and only if ev follows some
indication Abortj(∗, h, i) in T , for some Abstract instance j (i.e., such that h is an abort
history of j and next(j) = i). Furthermore, req is called a valid init request (VIR) for
Abstract instance i if and only if req is invoked with a VIH for i at invocation of req.

Finally, we define requests valid for Abstract instance i. In the special case where
i = 1, any invoked request is valid. In case i > 1, valid requests are: (i) VIR requests
for i and (ii) informally, the requests invoked after instance i is “initialized”, i.e., after
i commits/aborts some VIR request. More formally, given trace T , if the invocation of
req follows an indication of a request req′ in the instance subtrace T |i of T , where req′

is a VIR for i, then req is valid for i.
In addition, for every instance i, if client c is Byzantine, then every request in {c} ×

CMD × N is valid for i.
With the above definitions, we are ready to state the properties of Abstract instance i

(parameterized by a predicate Pi that reflects progress). In the following, “prefix” refers
to a non-strict prefix.

(1) (Validity) For any commit/abort event ev and the corresponding commit/abort his-
tory h of i, no request appears twice in h and every request in h is a valid request
for i, or an element of a valid init history for i at ev.

(2) (Termination) If a correct client c invokes a valid request req, then c eventually
commits or aborts req (i.e., i eventually returns a matching indication).

(3) (Progress) If some predicate Pi holds, a correct client never aborts a request.
(4) (Init Order) For any commit/abort event ev and the corresponding commit/abort

history h of i, the longest common prefix of all valid init histories for i at ev is a
prefix of h.

(5) (Commit Order) Let hreq and hreq′ be any two commit histories of i: either hreq is a
prefix of hreq′ or vice versa.

(6) (Abort Order) Every commit history of i is a prefix of every abort history of i.

It is important to note that Abstract is a strict generalization of a state machine.
Namely, a state machine is precisely an Abstract instance (with id i = 1) that never
aborts. In this case, the Abort Order and Init Order properties become irrelevant.

3.4. Abstract composability
The key invariant in the Abstract framework is idempotence: a composition of any
two Abstract instances is, itself, an Abstract instance. Two Abstract instances are com-
posed by feeding an abort history of a given instance i to instance next(i) as the
latter’s init history, i.e., by having a client that receives Aborti(req, h, next(i)) invoke
Invokenext(i)(req, h). The abort/init history h is included in a client’s c invocation of
next(i) only once, with the first invocation of instance next(i) by c. Intuitively, the com-
posed instance can typically have a different Progress property than the original two,
but is never “weaker” than any of them.

More precisely, consider two Abstract instances: instance 1 that switches to i (de-
noted, for clarity, by 1 → i) and instance i, that switches to j (denoted by i → j).
Using these two instances, we can implement a single Abstract instance that inher-
its instance number 1 and switches to j (denoted by 1 → j). This implementation is
a simple client-side protocol that we call Abstract composition protocol (ACP), which
proceeds as follows.

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

0:10 P.L. Aublin et al.

Initially, with each invocation of the implemented instance 1 → j (Invoke1→j(req))
a client simply invokes instance 1 → i (Invoke1→i(req)). If a client receives
Commit1→i(req, hreq), it outputs Commit1→j(req, hreq). If, however, a client in ACP re-
ceives Abort1→i(req, h, i) for the first time, it immediately feeds h to instance i → j
with Invokei→j(req, h), without “exposing” the Abort indication. From this point on,
for every following invocation of the implemented instance 1 → j (Invoke1→j(req)), a
client simply invokes Invokei→j(req) and never invokes again 1 → i. Finally, for ev-
ery received Commiti→j(req, hreq), a client outputs Commit1→j(req, hreq) and for every
Aborti→j(req, hA, j), a client outputs Abort1→j(req, hA, j).

Abstract composability is captured by the following theorem:

THEOREM 3.1. [Abstract composability theorem] Given Abstract instance 1 that
switches to i and instance i that switches to j, the ACP protocol implements Abstract
instance 1 that switches to j.

In the following, we prove Theorem 3.1, which, by induction, extends to Abstract com-
positions of arbitrary length. We have also specified Abstract and ACP in TLA+/PlusCal
[Lamport 2009] and model-checked the Abstract composability theorem using the TLC
model checker. The details are available in the technical report [Guerraoui et al. 2008].

PROOF. In the following, we prove the Abstract properties of instance 1 → j. Notice
that Init Order is not relevant for instances with instance number 1, including 1 → j.
We, however, use Init Order of instance i→ j to prove the other properties of instance
1 → j. We denote the set of commit (resp., abort) histories of Abstract instance x by
CHx (resp., AHx).

We first prove that individual commit/abort indications of Abstract instance 1 → j
conform to the specification. For commit indications, it is straightforward to see from
ACP that CH1→j = CH1→i ∪ CHi→j . Since CH1→i ⊂ H and CHi→j ⊂ H (by specifica-
tions of 1→ i and i→ j), this implies that for every request req committed by instance
1 → j, its commit history hreq ∈ CH1→j is in H, such that req ∈ hreq. Similarly, it is
easy to see that AH1→j = AHi→j ⊂ H. Moreover, recall that Abstract instance numbers
should monotonically increase; in this case, 1 < j follows directly from 1 < i and i < j,
by specifications of Abstract instances 1→ i and i→ j.

To prove Validity, observe that no request appears twice in any commit/abort history
in CH1→j ∪ AH1→j , since, by Validity of 1 → i and i → j, no request appears twice
in CH1→i ∪ CHi→j ∪ AHi→j . Moreover, every request in every commit/abort history of
1→ j is an invoked request or a request by a Byzantine client — since the id of Abstract
instance 1→ j is equal to 1, all such requests are by definition valid.

Termination also follows directly from Termination of instances 1 → i and i → j.
Notice that a request req that a correct client c executing ACP invokes on i→ j without
an init history (i.e., such that req is not a VIR for i → j) is indeed valid for i → j (and
hence the invocation of req terminates); namely, before c invokes req, c already received
an indication for its VIR invocation of i → j. Indeed, by ACP, the first invocation of
i→ j is a VIR invocation that contains a valid init history, and, by well-formedness of
c, c does not invoke req before it receives the indication matching its first invocation.

To prove Commit Order, we focus on the case where req and req′ are originally com-
mitted by different instances, i.e., we focus on showing that for any hreq ∈ CH1→i and
hreq′ ∈ CHi→j , hreq is a prefix of hreq′ — other cases directly follow from the Commit
Order properties of instances 1→ i and i→ j.

By definition, every VIH for instance i → j is an abort history of instance 1 → i. By
Abort Order of 1 → i, every commit history of 1 → i, including hreq, is a prefix of any
abort history of 1 → i. Hence, hreq is a prefix of every VIH for instance i → j. By Init

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

The Next 700 BFT Protocols 0:11

Order of i → j, the longest common prefix of VIHs of instance i → j is a prefix of all
histories in CHi→j ∪AHi→j , including hreq′ . This implies that hreq is a prefix of hreq′ .

The proof of Abort Order follows the same reasoning as the above proof of Commit
Order.

Finally, we show that the Progress of 1 → j holds for some predicate P1→j , which,
intuitively, is not “weaker” than any of the respective predicates P1→i and Pi→j . We do
not attempt, however, to express P1→j in terms of P1→i and Pi→j .

If P1→i holds during an entire execution, clearly 1→ j never aborts at a correct client
as 1 → i never aborts. On the other hand, if Pi→j holds during an entire execution,
instance 1 → i might abort the request; however, a correct client executing ACP does
not output these abort indications, but immediately invokes instance i → j. On the
other hand, since Pi→j holds, instance i→ j never aborts a correct client’s request.

To summarize, ACP involves Abstract switching through clients, who receive an abort
indication containing an abort history and invoke the next instance. This approach
allows for a streamlined specification of Abstract that does not reason about any specific
process beyond clients. Indeed, in the Abstract specification we did not have to mention
replicas implementing Abstract, nor any other process apart from clients. This shared-
memory style of Abstract is intentional. In the remainder of this section we briefly
discuss some of the aspects of Abstract composability and its proof.
Alternatives to switching through clients. In practice, due to e.g., performance
or security concerns, a need may arise for switching through other processes in the
system, beyond clients. For example, it might be useful to switch through a replica
implementing Abstract, e.g., to save on bandwidth, or through a dedicated reconfig-
urator process to, e.g., (logically) centralize management. One way of achieving this
would be to generalize the Abstract specification to accommodate for this. Notice here
that our proof of Theorem 3.1 relies on clients only for Progress and Termination, to
ensure that the state is actually transferred to the next Abstract instance. Instead,
for example, the Abstract specification could be generalized so that one or more pro-
cesses, reconfigurators, receive the full abort indication with abort histories instead of
a client. Formalizations of such generalizations of our specification are, however, out
of the scope of this paper.

That said, it is perfectly possible to achieve switching through replicas and still reap
benefits of the composability proofs we present here, without introducing new pro-
cesses to the Abstract specification. To this end, it is sufficient to allow a replica imple-
menting Abstract to act as a client of Abstract, by invoking a special noop request that
does not modify the state of the replicated state machine. That way, the replica can
perform switching itself.6 This can be further complemented by disallowing applica-
tion clients from transferring the state themselves. Such switching through replicas is
illustrated in R-Aliph, our robust BFT protocol that we present in Section 6.3. Before
that, we also discuss an important state transfer performance optimization used in all
our Abstract implementations in Section 4.4.
Byzantine clients. Abstract composability theorem (ACT, Theorem 3.1) holds despite
Byzantine clients. Whereas Byzantine clients are not very prominent in our proof of
the ACT, notice that this is only so because ACT relies on the composition of imple-
mentations of individual Abstract instances 1 → i and i → j that are assumed to be
correct despite Byzantine clients. For example, a correct implementation of instance

6Of course, in general, depending on Progress of a specific Abstract instance i, up to f+1 of such replica noop
invocations might be required to actually perform switching (e.g., if instance i guarantees Progress despite
f Byzantine replicas).

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

0:12 P.L. Aublin et al.

i→ j must guarantee that a Byzantine client cannot successfully forge an init history,
i.e., correct implementations of 1→ i and i→ j must ensure that any valid init history
h for i → j was indeed previously output as an abort history of 1 → i. How specific
Abstract implementations achieve this causal dependency has no effect on the correct-
ness of ACT; however, in the rest of this paper, we will demonstrate how such correct
implementations can be achieved. For example, our implementations use unforgeable
digital signatures to enforce causality between abort histories and init histories.

4. SIMPLE ILLUSTRATION: AZYZZYVA
In this section, we illustrate how Abstract significantly eases the design, implemen-
tation, and proof of BFT protocols. We describe AZyzzyva, a full fledged BFT protocol
that mimics Zyzzyva [Kotla et al. 2010] in its “common case” (i.e., when there are no
link or server failures). In “other cases”, AZyzzyva relies on Backup, an Abstract im-
plementation with strong progress guarantees that can be implemented on top of any
existing BFT protocol. We chose to mimic Zyzzyva, for it is known to be efficient, yet
very difficult to implement [Clement et al. 2009]. Using Abstract, we had to write and
test less than 30% of the Zyzzyva code to obtain AZyzzyva. Abstract also considerably
simplified the proof of AZyzzyva compared to that of Zyzzyva, due to the composabil-
ity of Abstract instances and the straightforward (and reusable) proof of the Backup
module.

We start this section with an overview of AZyzzyva. We then describe the Abstract
instances it relies on. Finally, we provide a qualitative assessment, as well as a perfor-
mance evaluation of AZyzzyva.

4.1. Protocol overview
As mentioned before, AZyzzyva is a BFT protocol that mimics Zyzzyva [Kotla et al.
2010]. Zyzzyva requires 3f + 1 replicas. It works as follows. In the “common case”,
Zyzzyva executes the fast speculative path depicted in Figure 2. A client sends a re-
quest to a designated server, called primary (r1 in Fig. 2). The primary appends a se-
quence number to the request and broadcasts the request to all replicas. Each replica
speculatively executes the request and sends a reply to the client. All messages in the
above sequence are authenticated using MACs rather than (more expensive) digital
signatures. The client commits the request if it receives the same reply from all 3f + 1
replicas.

r1

r2

r3

r4

client

Number of MAC
operations per process

Number of MACs
carried by a message

3f+1 3f+1 3

3f+1 2 1

3f+1

Fig. 2. Communication pattern of ZLight (fast path of Zyzzyva).

When a client does not receive the same reply from all 3f + 1 replicas, Zyzzyva
executes a second phase. This second phase aims thus at handling the case with
link/server/client failures (“worst-case”). Roughly, this phase (that AZyzzyva avoids to
mimic) consists of considerable modifications to PBFT [Castro and Liskov 2002], which

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

The Next 700 BFT Protocols 0:13

arise from the “profound effects” [Kotla et al. 2010], that the Zyzzyva “common-case”
optimizations have on PBFT’s “worst-case”.

Our goal when building AZyzzyva using Abstract is to show that we can completely
separate the concerns of handling the “common-case” and the “worst-case”. AZyzzyva
uses two different Abstract implementations: ZLight and Backup. Roughly, ZLight is an
Abstract that guarantees progress in the Zyzzyva “common-case”. On the other hand,
Backup is an Abstract with strong progress: it guarantees to commit an exact certain
number of requests k (k is itself configurable) before it starts aborting. AZyzzyva works
as follows: every odd (resp., even) Abstract instance is ZLight (resp., Backup). This
means that ZLight is first executed. When it aborts, it switches to Backup, which com-
mits the next k requests. Backup then aborts subsequent requests and switches to (a
new instance of) ZLight, and so on.

In the following, we describe ZLight and Backup. Then, we assess the qualitative
benefit of using Abstract. Finally, we discuss the performance of AZyzzyva.

4.2. ZLight
ZLight implements Abstract with the following progress property which reflects
Zyzzyva’s “common case”: it commits requests when (a) there are no server or link fail-
ures, and (b) no client is Byzantine (crash failures are tolerated). When this property
holds, ZLight implements Zyzzyva’s “common-case” pattern (Fig. 2), described earlier.
Outside the “common-case”, i.e., when a client does not receive 3f+1 consistent replies,
ZLight performs additional steps, depicted in Figure 3 (see the last two communication
steps). The client sends a PANIC message to replicas. Upon reception of this message,
replicas stop executing requests and send back a signed abort message containing their
history (replicas will now send the same abort message for all subsequent requests).
When the client receives 2f + 1 signed messages containing replica histories, it can
generate an abort history. It will then use this abort history to switch to Backup.

r1

r2

r3

r4

client
panicreq req reply abort

Fig. 3. Communication pattern of ZLight outside the “common-case” (the three first rounds correspond to
the “common-case”).

In the remainder of this section, we give the pseudo-code of ZLight. We first present
the code executed in the common-case. For ease of presentation, we do not mention init
histories. We do then present the pseudo-code executed when ZLight aborts. Follows a
presentation of the pseudo-code executed to initialize a new ZLight instance. Finally,
we conclude by presenting the pseudo-code of a checkpointing protocol that is used in
ZLight to garbage collect some data stored by replicas.

4.2.1. Common case. This section describes the pseudo-code executed by ZLight in the
common-case. A message m sent by a process p to a process q and authenticated with a
MAC is denoted by ⟨m⟩µp,q

. A process p can use vectors of MACs (called authenticators
[Castro and Liskov 2002]) to simultaneously authenticate a message m for multiple

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

0:14 P.L. Aublin et al.

recipients belonging to a set S; we denote such a message, which contains ⟨m⟩µp,q , for
every q ∈ S, by ⟨m⟩αp,S

. In addition, we denote the digest of a message m by D(m),
and ⟨m⟩σp denotes a message that contains D(m) signed by the private key of process
p and the message m. Notations for message fields and client/replica local variables is
shown in Figure 4. To help distinguish clients’ requests for the same command o, we
assume that client c calls Invokei(req), where req = ⟨c, o, tc⟩ and where tc is a unique,
monotonically increasing client’s timestamp. A replica rj logs req by appending it to its
local history, denoted LHj . A replica rj executes req by applying it to the state of the
replicated state machine and by calculating an application level reply (i.e., the reply of
a replicated state machine) for the client.

Σ - the set of all replicas
i - current Abstract id
c/rj - client (resp., replica) ID
tc - local timestamp at client c
tj [c] - the highest tc seen by replica rj
o - command invoked by the client
LHj - a local history at replica rj
replyj - application reply (which is a function of LHj)
snj - sequence number at replica rj

Fig. 4. Message fields and local variables.

We detail below the various steps that are executed when a client invokes a request.
For the sake of brevity, we omit to mention that upon receiving a message m, a process
p first checks that m has a valid authenticator, and does not process the message if
that is not the case.

Step Z1. On Invokei(req), client c sends a message m′ = ⟨REQ, req, i⟩αc,Σ to the primary
(say r1) and triggers timer T set to 3∆.

Step Z2. The primary r1 on receiving m′ = ⟨REQ, req, i⟩αc,Σ , if req.tc is higher
than t1[c], then (i) it updates t1[c] to req.tc, (ii) increments sn1, and (iii) sends
⟨⟨ORDER, req, i, sn⟩µr1,rj

,MAC j⟩ to every replica rj , where MACj is the MAC entry for
rj in the client’s authenticator for m′.

Step Z3. Replica rj on receiving (from primary r1) ⟨⟨ORDER, req, i, sn′⟩µr1,rj
,MACj⟩,

if (i) MACj authenticates req and i, (ii) sn′ = snj + 1, and (iii) tj [c] < req.tc, then it
(i) updates snj to sn′ and tj [req.c] to req.tc, (ii) logs and then executes req, and (iii)
sends ⟨RESP, replyj , D(LHj), i, req.tc, rj⟩µrj,c

to c.7 If MACj verification fails, rj stops
executing Step Z3 in instance i.

Step Z4. If client c receives 3f +1 ⟨RESP, reply,LHDigest, i, req.tc, ∗⟩µ∗,c messages from
different replicas before expiration of T , with identical digests of replicas’ local his-
tory (LHDigest) and identical replies (or digests thereof), then the client commits req

7Here (see also Fig. 4) replyj = rep(LHj), where rep is the function within a replicated state machine (i.e.,
application) that computes the reply to the client. As an optimization, all but one designated replica can
send reply digests D(replyj) instead of replyj within a RESP message.

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

The Next 700 BFT Protocols 0:15

with reply. Otherwise, the client triggers the panicking mechanism as explained in
section 4.2.2 (Step P1).

4.2.2. Aborting. In this section, we describe the pseudo-code of the panicking mecha-
nism that clients trigger when they do not receive 3f+1 consistent replies (in Step Z4).
As soon as the execution of this mechanism completes, the client is able to generate
an abort history that it can use to switch to another Abstract instance (Backup in the
case of the AZyzzyva protocol).

Step P1. If the client does not commit request req by the expiration of timer T

(triggered in Step Z1), c panics, i.e., it sends a ⟨PANIC, req.tc⟩µc,rj
message to every

replica rj . Since messages may be lost, the client periodically sends PANIC messages,
until it aborts the request.

Step P2. Replica rj , on receiving a ⟨PANIC, req.tc⟩µc,rj
message, stops executing new

requests (i.e., stops executing Step Z3) and sends ⟨ABORT, req.tc, LHj , next(i)⟩σrj
to c

(with periodic retransmission).

Step P3. When client c receives 2f + 1 ⟨ABORT, req.tc, ∗, next(i)⟩σ∗ messages with cor-
rect signatures from different replicas and the same value for next(i), the client collects
these messages into a set ProofAHi , and extracts the abort history AHi from ProofAHi

as follows: first, c generates history AH such that AH[j] equals the value that appears
at position j ≥ 1 of f + 1 different histories LHj that appear in ProofAHi ; if such a
value does not exist for position x then h does not contain a value at position x or
higher. Then, c extracts the abort history AHi by taking the longest prefix of AH in
which no request appears twice.

4.2.3. Initializing a ZLight instance. In this section, we describe the way a ZLight instance
is initialized. We assume that a client extracted an abort history AHi and that it
invokes instance i′ = next(i). To do so, it accompanies req with init history IHi′ = AHi

and ProofAHi . We summarize below the additional actions performed by processes in
the various steps of ZLight to take into account init histories.

Step Z1+. On Invokei′(req, IH), the message(s) sent by the client also contains IH
and the set of signed ABORT messages ProofIH returned by the preceding Abstract i,
where i′ = next(i).

Step Z2+. If its local history LH1 is empty, the primary/head r1 executes the step only
if (i) IH can be verified against ProofIH , following the algorithm given in Step P3
(Section 4.2.2), and (ii) ABORT messages in ProofAHi indeed declare i′ as next(i).

Step Z3+. If its local history LHj is empty, the replica rj executes the step only if
(i) IH can be verified against ProofIH , following the algorithm given in Step P3
(Section 4.2.2), and (ii) ABORT messages in ProofAHi indeed declare i′ as next(i). If
so, then (before executing req) rj logs all the requests contained in IH (i.e., rj sets LHj

to IH); then rj logs req unless req was already in IH.

Step P1+. On sending PANIC messages for a request that was invoked with an init
history, client also includes IH and the set of signatures ProofIH returned by the
preceding Abstract i within a PANIC message.

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

0:16 P.L. Aublin et al.

Step P2+. If its local history LHj is empty, replica rj , executes the step only if (i)
IH can be verified against ProofIH , following the algorithm given in Step P3 (Sec-
tion 4.2.2), and (ii) ABORT messages in ProofAHi indeed declare i′ as next(i). Then,
before executing the step as described in Section 4.2.2, rj first sets LHj to IH.

4.2.4. Checkpointing. ZLight uses a lightweight checkpoint subprotocol (LCS) to trun-
cate histories every CHK requests (in our performance evaluation, CHK = 128). LCS
is very similar to checkpoint protocols used in [Castro and Liskov 2002; Kotla et al.
2010]. Its operating principle is the following:

(1) Every replica rj increments a checkpoint counter cc and sends it along with the
digest of its local state to every other replica (using simple point-to-point MACs),
when its (non-checkpointed suffix of) local history reaches CHK requests. Then, rj
triggers a checkpoint timer.

(2) If the timer expires and there is no checkpoint, the replica stops executing all re-
quests and retransmits its last checkpoint message to every other replicas.

(3) If replica rj receives the digest of the same state stcc with the same checkpoint
counter number cc greater than lastcc (initially lastcc = 0) from all replicas, rj :
(a) truncates its local history and checkpoints its state to stcc, and (b) stores cc to
variable lastcc. Checkpointed state stcc becomes a prefix of replicas’ local histories
to which new requests are appended and is treated as such in all operations on local
histories in our algorithms. Moreover, every abort or commit history of length at
most cc ∗ CHK is considered to be a prefix of stcc.

With LCS, Step P2 of the panicking mechanism (Sec. 4.2.2) is modified so that
a digest of the last checkpointed state, the last checkpoint number, and the non-
checkpointed suffix of the local history are propagated by an aborting replica rj in
place of a complete local history LHj . Note however that LCS has an additional slight
impact on the panicking/aborting mechanism. Consider, for example, replicas perform-
ing a checkpoint cc = 34 concurrently with some client panicking. What may happen
is that when the PANIC message is received by, say replicas r1 and r2, the local state
of replica r1 is already truncated to st34, whereas the local state of replica r2 is still
st33 followed by CHK requests. — we refer to this effect as partial checkpoint. If r1 and
r2 send such (seemingly different) information to the panicking client within ABORT
messages, a client might not be able to tell that the local states and local histories of
replicas r1 and r2 are, in fact, identical. This may in turn impact the panicking/aborting
subprotocol as already described. To this end, when: (a) the non-checkpointed suffix of
local history of replica rj contains CHK requests or more, but a replica rj did not yet
perform a checkpoint cc, and (b) replica rj is about to send an ABORT message, then
replica rj tentatively performs checkpoint cc and calculates stcc prior to sending an
ABORT. Then, rj adds the digest of stcc to its ABORT message that already contains
the digest of stcc−1 and the non-checkpointed suffix, as explained earlier. This allows
the client to avoid the apparent ambiguity in identifying the same histories in Step P3,
Sec. 4.2.2, in case of a partial checkpoint.

4.3. Backup
Backup is an Abstract implementation with a progress property that guarantees that
exactly k ≥ 1 requests will be committed, where k is a generic parameter (we explain
our configuration for k at the end of this section). We employ Backup in AZyzzyva to
ensure progress outside “common-cases” (e.g., under replica failures).

We implemented Backup as a very thin wrapper (around 600 lines of C++ code) that
can be put around any existing BFT protocol. In our C/C++ implementations, Backup

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

The Next 700 BFT Protocols 0:17

is implemented over PBFT [Castro and Liskov 2002], for PBFT is the most extensively
tested BFT protocol and it is proven correct. Other existing BFT protocols that provide
robust performance under failures, like Aardvark [Clement et al. 2009], are also very
good candidates for the Backup basis, as illustrated in Section 6.3.

To implement Backup, we exploit the fact that any BFT protocol can totally order
requests submitted to it and implement any functionality on top of this total order.
In our case, Backup is precisely this functionality. Backup works as follows: it ignores
all the requests delivered by the underlying BFT protocol until it receives a request
containing a valid init history, i.e., an unforgeable abort history generated by the pre-
ceding Abstract (ZLight in the case of AZyzzyva). At this point, Backup sets its state
by executing all the requests contained in the valid init history it received. Then, it
simply executes the first k requests ordered by the underlying BFT protocol (neglect-
ing subsequent init histories) and commits these requests. After committing the kth

request, Backup aborts all subsequent requests, returning the signed sequence of ex-
ecuted requests as the abort history. A client can switch from Backup as soon as it
receives f + 1 signed messages from different replicas, containing an identical abort
history and the same next Abstract instance id i′. This is a reasonable requirement on
the BFT protocol that underlies Backup, since any BFT protocol must anyway provide
an identical reply from at least f + 1 replicas; in the case of Backup abort history, we
just require this particular reply to be signed (all existing BFT protocols we know of
provide a way to digitally sign messages).

The parameter k used in Backup is generic and is an integral part of the Backup
progress guarantees. Our default configuration increases k exponentially, with every
new instance of Backup. This ensures the liveness of the composition, which might not
be the case with, say, a fixed k in a corner case with very slow clients.8 More impor-
tantly, in the case of failures, we actually do want to have a Backup instance remaining
active for long enough, since Backup is precisely targeted to handle failures. On the
other hand, to reduce the impact of transient link failures, which can drive k to high
values and thus confine clients to Backup for a long time after the transient failure
disappears, we flatten the exponential curve for k to maintain k = 1 during some tar-
geted outage time.9 In our implementation, we also periodically reset k. Dynamically
adapting k to fit the system conditions is appealing but requires further studies and is
out of the scope of this paper.

4.4. State transfer optimization
Sending entire local histories to clients within ABORT messages in Step P2 of the pan-
icking/aborting subprotocol (Sec. 4.2.2) might reveal expensive, even if local histories
are checkpointed as described in Section 4.2.4. To this end, all our Abstract implemen-
tations presented in this paper, except Backup, implement the following state transfer
optimization when switching to the next Abstract instance.10

Upon receiving a PANIC message from a client in Step P2, replica rj sends an ABORT
message to the client containing the signed history of digests of (non-checkpointed)

8In short, k requests committed by a single Backup instance i might all be invoked by the same, fast client. A
slow client can then get its request aborted by i. The same can happen with a subsequent Backup instance,
etc. This issue can be avoided by exponentially increasing k (for any realistic load that does not increase
faster than exponentially) or by having the replicas across different Abstract instances share a client input
buffer.
9For example, using k = ⌈C ∗2m⌉, where m is incremented with every new Abstract instance, with the rough
average time of 50ms for switching between 2 consecutive Backup instances in AZyzzyva, we can maintain
k = 1 during 10s outages with C = 2−200.
10In Backup, to minimize the size of state transfer through clients, we simply align switching with a check-
point, since the former can be performed at will.

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

0:18 P.L. Aublin et al.

requests, in place of the signed history of (non-checkpointed) requests. The client per-
forms Step P3 normally, except that it extracts an abort history which contains digests
of requests, rather than an abort history that contains full requests.

A client normally uses such an abort history (together with the corresponding proof
of 2f + 1 ABORT messages) as an init history of the next Abstract instance. During
initialization of the next instance, the replicas verify the abort history normally. Of-
ten, a replica being initialized will have all the requests locally and will initialize its
local state accordingly. However, a replica might not have some requests whose digests
appear in the init history — we speak of missing requests. If a replica misses requests
at initialization, it simply asks other replicas for inter-replica state transfer of missing
requests. This procedure is guaranteed to terminate since each digest of the request in
the init history is vouched for by at least f + 1 replicas; for each request, at least one
of these replicas is correct and supplies the missing request.

4.5. Qualitative assessment
In evaluating the effort of building AZyzzyva, we focus on the cost of ZLight in terms of
lines of code. Indeed, Backup, for which the additional effort is small (around 600 lines
of C++ code), can be reused for other BFT protocols in our framework. For instance, we
use Backup in our Aliph and R-Aliph protocols as well (Section 5 and 6).

Our main observation is that it took 4086 lines of code to implement ZLight, which is
to be contrasted to 14339 of lines of code needed for Zyzzyva. Note that we implemented
and used an external library that contains cryptographic functions, networking code
(to send/receive messages and manage sockets), and data structures (e.g., maps, sets).
This library roughly contains 7,500 lines of code that are not taken into account. To
provide a fair comparison, we ported Zyzzyva on this library. In other words, to build
ZLight, we needed less than 30% of the Zyzzyva line count (14,339 lines).

Needless to say, this line-of-code comparison has to be taken with a grain of salt:
(i) these protocols have been developed and proved by different researchers, and (ii)
Zyzzyva does not fully implement the code required to handle faults. Yet, we believe
that the line-of-code metric provides a useful intuition of the difference in code and
algorithmic complexity between Zyzzyva and ZLight since both implementations use
the same code base, inherited from PBFT [Castro and Liskov 2002].

As another benefit of using Abstract comes also the fact that we did not have to prove
from scratch the correctness of AZyzzyva in all possible executions. Namely (see also
Appendix A), to prove AZyzzyva we needed to concentrate our effort only on proving
the correctness of ZLight. The general Abstract composability theorem 3.1 and the
straightforward proof of the reusable Backup module complement the entire proof.

Finally, it is fair to note that incremental development using Abstract may, in fact,
increase the code base that needs to be maintained. Indeed, in our case, instead
of maintaining only Zyzzyva or PBFT, we would need to maintain both ZLight and
PBFT/Backup, which together have more lines of code than any of Zyzzyva or PBFT
individually. In this sense, there is no free lunch: adaptive performance of Abstract has
a certain price with respect to monolithic BFT protocols. While more lines of code might
seemingly imply more vulnerabilities for Byzantine attacks and more maintenance ef-
fort, we believe that this is not the case due to simplified design, proofs and testing
of individual modules. Such modular designs are widely used in traditional software
engineering, where monolithic solutions that might have less lines of code, often have
more bugs and are more difficult to maintain.

4.6. Performance evaluation
We have compared the performance of AZyzzyva and Zyzzyva in the “common-
case”, using the benchmarks described in Section 5.4. Not surprisingly, AZyzzyva and

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

The Next 700 BFT Protocols 0:19

Zyzzyva have identical performance in this case, since in the “common-case” the two
protocols are the same. In this section, we do thus focus on the cost induced by our
switching mechanism when the operating conditions are outside the common-case (and
ZLight aborts a request).

To assess the switching cost, we perform the following experiments: we feed the re-
quest history of ZLight with r requests of size 1 kB. We then issue 10,000 successive
requests. To isolate the cost of the switching mechanism, we do not execute the ZLight
common case; the measured time comprises the time required (1) by the client to send
a PANIC message to ZLight replicas, (2) by the replicas to generate and send a signed
message containing their history, (3) by the client to invoke Backup with the abort/init
history, and (4) by the (next) client to get the abort history from Backup and initialize
the next ZLight instance. Note that we ensure that for each aborted request, the his-
tory contains r requests. We reproduced each experiment three times and observed a
variance of less than 3%.

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 0 50 100 150 200 250

S
w

it
c
h
in

g
 t

im
e
 (

m
s
)

History size (nb of requests)

30% misses
no misses

Fig. 5. Switching time as a function of the history size and the percentage of missing requests in replica
histories.

Figure 5 shows the switching time (in ms) as a function of the history size when the
number of tolerated faults equals 1. As described in Section 4.2.4, ZLight uses a check-
pointing mechanism triggered every 128 requests. Moreover, to account for requests
that can be received while a replica is performing a checkpoint, we assume that the
history size can grow up to 250 requests. Note that in our current implementation, the
history size is actually bounded: when the history is full, requests are blocked until
a checkpoint is completed. We plot two different curves: one corresponds to the case
when replicas do not miss any request. The other one corresponds to the case of miss-
ing requests, described in Section 4.4. More precisely, we assess the performance when
30% of the requests are absent from the history of at least one replica upon receiving
an init history containing signed message digests. Not surprisingly, we observe that
the switching cost increases with the history size and that it is slightly higher in the
case when replicas miss some requests (as replicas need to fetch the requests they
miss). Interestingly, we see that the switching cost is low. It ranges between 19.7ms
and 29.2ms. This is very reasonable provided that faults are supposed to be rare in the
environment for which Zyzzyva has been devised.

Furthermore, we observe that the switching cost grows faster than linearly. We ar-
gue that this is not an issue since the number of requests in histories is bounded by the
checkpointing protocol. Finally, the switching cost could easily be higher in the case of

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

0:20 P.L. Aublin et al.

a real application performing actual computations on requests that are reordered by
the switching mechanism. However, it is important to notice that this extra cost would
also be present in Zyzzyva, induced by the request replay during view-changes.

5. A NEW BFT PROTOCOL: ALIPH
In this section, we demonstrate how we can build novel, very efficient BFT protocols,
using Abstract. We present a new protocol, called Aliph, that achieves up to 30% lower
latency and up to 25% higher throughput than state-of-the-art protocols. The develop-
ment of Aliph consisted in building two new instances of Abstract, each requiring less
than 30% of the code of state-of-the-art protocols, and reusing Backup (Section 4.3). In
the following, we start by an overview of Aliph. We then present the two new Abstract
instances it relies on. Finally, we assess its performance.

5.1. Protocol overview
Aliph is a new BFT protocol that uses three Abstract implementations: Backup, Quo-
rum and Chain. The Backup protocol has been introduced in Section 4.3. A Quorum
instance commits requests as long as there are no: (a) server/link failures, (b) client
Byzantine failures, and (c) contention. Quorum implements a very simple communi-
cation pattern (one round-trip of message exchange) that is very efficient when there
is no contention. The Chain protocol provides exactly the same progress guarantees
as ZLight (Section 4.2), i.e., it commits requests as long as there are no server/link
failures or Byzantine clients. Chain implements a pipeline pattern that is very effi-
cient under contention, unlike Quorum. Aliph uses the following static switching or-
dering to orchestrate its underlying protocols: Quorum-Chain-Backup-Quorum-Chain-
Backup-... In other words, Quorum is initially active. As soon as it aborts (e.g., due to
contention), it switches to Chain. Chain commits requests until it aborts (e.g., due
to asynchrony). Aliph then switches to Backup, which commits k requests (see Sec-
tion 4.3). When Backup commits k requests, it aborts, switches back to Quorum, and
so on.

The characteristics of Aliph are summarized in Table I, considering the metrics
of [Kotla et al. 2010]. As we can see, Aliph achieves better throughput and latency
than existing protocols and is optimally resilient. More precisely, Aliph is the first op-
timally resilient protocol that achieves a latency of 2 one-way message delays when
there is no contention. It is also the first protocol for which the number of MAC op-
erations at the bottleneck replica tends to 1 (under high contention when batching of
messages is enabled): 50% less than required by state-of-the-art protocols.

Table I. Characteristics of state-of-the-art BFT protocols.

PBFT Q/U HQ Zyzzyva Aliph
Number of replicas 3f+1 5f+1 3f+1 3f+1 3f+1
Number of MAC operations at the bottleneck replica 2+ 8f

b
2+4f 2+4f 2+ 3f

b
1+ 2f+1

b
Number of 1-way messages in the critical path 4 2 4 3 2

Note: Bold entries denote protocols with the lowest known cost.

In the next two sections, we describe Quorum and Chain. We focus on the common-
case as both Quorum and Chain use the same panicking mechanism and checkpointing
protocol as ZLight that we presented in Sections 4.2.2 and 4.2.4, respectively.

5.2. Quorum
In this section we present Quorum, an Abstract implementation used in the Aliph pro-
tocol to guarantee low latency when there is no contention. We first describe the Quo-
rum protocol. We then give its pseudo-code.

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

The Next 700 BFT Protocols 0:21

5.2.1. Protocol description. The communication pattern implemented in Quorum is de-
picted in Figure 6. This pattern is very simple: it requires only one round-trip of mes-
sage exchange between a client and replicas to commit a request. Namely, the client
sends the request to all replicas that speculatively execute it and send a reply to the
client. As in ZLight, replies sent by replicas contain a digest of their history. The client
checks that the histories sent by the 3f + 1 replicas match. If that is not the case, or
if the client does not receive 3f + 1 replies, the client invokes a panicking mechanism.
This is the same as in ZLight (Section 4.2.2): (i) the client sends a PANIC message
to replicas, (ii) replicas stop executing requests on reception of a PANIC message, (iii)
replicas send back a signed message containing their history. The client collects 2f +1
signed messages containing replica histories and generates an abort history. Note that,
unlike ZLight, Quorum does not tolerate contention: concurrent requests can be exe-
cuted in different orders by different replicas, inducing the current Quorum instance
to abort. This is not the case in ZLight, as requests are ordered by the primary.

r1

r2

r3

r4

client

Number of MAC
operations per process

Number of MACs
carried by a message

3f+1 2 3f+1

3f+1 3f+1

Fig. 6. Communication pattern of Quorum.

Quorum makes Aliph the first BFT protocol to achieve a latency of 2 one-way mes-
sage delays, while only requiring 3f + 1 replicas (Q/U [Abd-El-Malek et al. 2005] has
the same latency but requires 5f + 1 replicas). Given its simplicity and efficiency, it
might seem surprising not to have seen it published earlier. We believe that Abstract
made that possible because we could focus on the weaker (and hence easier to imple-
ment) Abstract specification, without having to consider the numerous difficult corner
cases that occur outside the “common-case”.

Finally, let us note that the implementation of Quorum is very simple. It requires
only 3200 lines of C/C++ code (including the code for panicking and checkpointing that
is the same as the respective code used in the ZLight and Chain protocols).

5.2.2. Pseudo-code. We give below the pseudo-code of Quorum using the same nota-
tions as the ones presented in Figure 4. Moreover, as for ZLight, we omit to mention,
for the sake of brevity, that upon receiving a message m, a process p first checks that
m has a valid authenticator. We do not describe the pseudo-code of the panicking and
checkpointing mechanisms as they are shared between Quorum and ZLight. Finally,
we maintain the definitions of a replica logging and executing a request from ZLight
(Sec. 4.2).

Step Q1. On Invokei(req), client c sends message ⟨REQ, req, i⟩µc,Σ to all replicas and
triggers timer T set to 2∆.

Step Q2. Replica rj on receiving ⟨REQ, req, i⟩µc,Σ from client c, if req.tc is higher
than tj [c], then it (i) updates tj [c] to req.tc, (ii) logs and executes req, and (iii) sends

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

0:22 P.L. Aublin et al.

⟨RESP, replyj , D(LHj), i, req.tc, rj⟩µrj,c
to c.

Step Q3. Identical to Step Z4 of ZLight.

5.3. Chain
In this section we present Chain, an Abstract implementation used in the Aliph proto-
col to ensure high throughput under contention. The Chain protocol shares similarities
with the protocol presented in [van Renesse and Schneider 2004]. Nevertheless, there
is a significant difference between the two protocols: the protocol presented in this pa-
per tolerates Byzantine faults, whereas the protocol presented in [van Renesse and
Schneider 2004] only tolerates crash faults, which makes it significantly simpler. This
section is organized as follows: we first describe the Chain protocol. We then give its
pseudo-code.

5.3.1. Protocol description. The communication pattern implemented in Chain is pre-
sented in Figure 7. As we see, Chain organizes replicas in a pipeline. All replicas know
the fixed ordering of replica IDs (called chain order); the first (resp., last) replica is
called the head (resp., the tail). Without loss of generality we assume an ascending
ordering by replica IDs, where the head (resp., tail) is replica r1 (resp., r3f+1).

r1

r2

r3

r4

client

Number of MAC
operations per process

Number of MACs
carried by a message

f+1 f+2 2(f+1)

f+1 2f+1 (f+1)(f+2)

2

2f+1 f+1

2(f+1) f+2 f+1

Fig. 7. Communication pattern of Chain.

In Chain, a client invokes a request by sending it to the head, who assigns sequence
numbers to requests. Then, each replica ri forwards the message to its successor −→ri ,
where −→ri = ri+1. The exception is the tail whose successor is the client: upon receiving
the message, the tail sends the reply to the client. Similarly, replica ri in Chain accepts
a message only if sent by its predecessor←−ri , where←−ri = ri−1; the exception is the head,
which accepts requests only from the client.

Chain tolerates Byzantine failures by ensuring: (1) that the content of a message is
not modified by a Byzantine replica before being forwarded, (2) that no replica in the
chain is bypassed, and (3) that the reply sent by the tail is correct. To provide those
guarantees, Chain relies on a novel authentication method we call chain authentica-
tors (CAs). CAs are lightweight MAC authenticators, requiring processes to generate
(at most) f+1 MACs (in contrast to 3f+1 in traditional authenticators). CAs guarantee
that, if a client commits request req, every correct replica logs req (i.e., appends it to its
local history). CAs, along with the inherent throughput advantages of a pipeline pat-
tern, are key to Chain’s dramatic throughput improvements over other BFT protocols.
We describe below how CAs are used in Chain.

Replicas and clients generate CAs in order to authenticate the messages they send.
Each CA contains MACs for a set of processes called successor set. The successor set of
clients consists of the f+1 first replicas in the chain order. The successor set of a replica

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

The Next 700 BFT Protocols 0:23

ri depends on its position i: (a) for the first 2f replicas, the successor set comprises the
next f + 1 replicas in the chain, whereas (b) for other replicas (i > 2f), the successor
set comprises all subsequent replicas in the chain, as well as the client. Dually, when
process p receives a message m it verifies m, i.e., it checks whether m contains a correct
MAC from the processes from p’s predecessor set (a set of processes q such that p is in
q’s successor set). For instance, replica r2 verifies that the message contains a valid
MAC from the replica r1 (i.e., the head) and the client, whereas the client verifies that
the reply it gets contains a valid MAC from the last f + 1 replicas in the chain order.

Whereas all Chain replicas log a request by appending it to their local history, only
f + 1 last replicas execute requests and calculate the application level reply. The reply
is sent to the client only by the tail. To make sure that the reply sent by the tail is
correct, the f processes that precede the tail in the chain order append a digest of the
reply to the message.11

When the client receives a correct reply, it commits it. On the other hand, when
the reply is not correct, or when the client does not receive any reply (e.g., due to a
Byzantine replica which discards the request), the client sends a PANIC message to
all replicas. Just like in ZLight and Quorum, when replicas receive a PANIC message,
they stop executing requests and send back a signed message containing their history.
The client collects 2f + 1 signed messages containing replica histories and generates
an abort history.

Chain makes Aliph the first protocol in which the number of MAC operations at the
bottleneck replica tends to 1. Indeed, the bottleneck replica in Chain is the f + 1-st
replica. This replica needs to (i) read a MAC from the client, (ii) read a MAC from its
f predecessors in the chain, and (iii) write a MAC for its f + 1 first successors in the
chain. Replicas in the chain can forward multiple requests in a single batch, and can
generate a single MAC for the batch of requests. The first f+1 replicas do nevertheless
need to read the MAC written by the client. Consequently, the bottleneck replica (i.e.,
the f+1-st replica) will perform 1+ 2f+1

b MAC operations per request, with b being the
number of requests per batch. State-of-the-art protocols [Kotla et al. 2010; Castro and
Liskov 2002] do all require at least 2 MAC operations at the bottleneck server (with
the same assumption on batching). The reason why this number tends to 1 in Chain
can intuitively be explained by the fact that these are two distinct set of replicas that
read a MAC from the client (the f + 1 first replicas in the chain) and write a MAC to
the client (the f + 1 last replicas in the chain). In contrast, state-of-the-art protocols
require some replicas to both read a MAC from the clients and write a MAC to the
clients.

We have implemented Chain in C/C++. The implementation requires about 4300
lines of code (including the panicking and checkpointing code). This is about 30% of
the code size of state-of-the-art protocols.

5.3.2. Pseudo-code. We describe below the pseudo-code of Chain. We use the same
notations as for ZLight and Quorum. These notations are summarized in Figure 4.
Moreover, we assume that every CHAIN message sent by a process p contains the
chain authenticator (CA) generated by p, as well as the MACs p received from its
predecessor ←−p and that are destined to processes in p’s successor set. Finally, we do
not describe the pseudo-code of the panicking and checkpointing mechanisms which
are shared between Chain and ZLight.

11In some cases, sequential request execution by f+1 Chain replicas might impact latency of Chain for large
values of f . On the other hand, (i) values of f are typically small, and (ii) there are practical workloads with
processing times much lower than the communication latency, e.g., when a metadata service is replicated.

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

0:24 P.L. Aublin et al.

Step C1. On Invokei(req), client c sends the message m′ = ⟨CHAIN, req, i⟩ to the head
(say r1) and triggers the timer T set to (n+ 1)∆.

Step C2. The head r1, on receiving m = ⟨CHAIN, req, i⟩ from client c, if (i) req.tc
is higher than t1[c], and (ii) the head can verify client’s MAC (otherwise the head
discards m), then the head (i) updates t1[c] to req.tc, (ii) increments sn1, and (iii) sends
⟨CHAIN, req, i, sn1,⊥,⊥⟩ to −→r1 = r2.

Step C3. Replica rj on receiving m = ⟨CHAIN, req, i, sn, REPLY, LHDigest⟩ from ←−rj , if
(i) it can verify MACs from all processes from its predecessor set against the content
of m, (ii) sn = snj + 1, and (iii) req.tc is higher than tj [c], then it (i) updates snj to
sn and tj [c] to req.tc, (ii) if rj is one of the first 2f replicas, it logs req, otherwise rj
logs and executes req, and (iii) rj sends ⟨CHAIN, req, i, sn,REPLY,LHDigest⟩ to −→rj ,
where REPLY = LHDigest = ⊥ in case of the first 2f replicas, REPLY = D(replyj)
and LHDigest = D(LHj) in case j ∈ {2f + 1 . . . 3f}, and REPLY = replyj and
LHDigest = D(LHj) in case rj is tail. In case MAC verification mentioned above fails,
replica stops executing Step C3 in instance i.

Step C4. If client c receives ⟨CHAIN, req, i, ∗, reply,LHDigest⟩ from the tail before ex-
piration of Tchain, and with MACs from last f + 1 replicas that authenticate req, i,
LHDigest and D(reply) (or reply itself), then c commits req with reply. Otherwise, the
client triggers the panicking mechanism explained in Section 4.2.2 (Step P1).

5.4. Performance evaluation
In this section, we evaluate the performance of Aliph. We ran all our experiments on
a cluster of 17 identical machines, each equipped with a 1.66GHz bi-processor and
2GB of RAM. Machines run the Linux 2.6.18 kernel and are connected using a Gigabit
Ethernet switch.

We first study the latency, throughput, and fault scalability using microbench-
marks [Castro and Liskov 2002; Kotla et al. 2010], varying the number of clients.
In these microbenchmarks clients invoke requests in closed-loop, i.e., a client does not
invoke a new request before it gets a reply for a previous one.12 The benchmarks are
denoted x/y, where x is the request payload size (in kB) and y is the reply payload size
(in kB). We then proceed by studying the performance of Aliph under faults. Finally,
we perform an experiment in which the input load dynamically varies.

We evaluate PBFT and Zyzzyva because the former is considered the “baseline”
for practical BFT implementations, whereas the latter is considered state-of-the-art.
Moreover, Zyzzyva systematically outperforms HQ [Kotla et al. 2010]; hence, we do not
evaluate HQ. Finally, we benchmark Q/U as it is known to provide better latency than
Zyzzyva under certain conditions. Note that Q/U requires 5f+1 servers, whereas other
protocols we benchmark only require 3f + 1 servers.

PBFT and Zyzzyva implement two optimizations: request batching by the primary,
and client multicast (in which clients send requests directly to all the servers and the
primary only sends ordering messages). All measurements of PBFT are performed
with batching enabled as it always improves performance. This is not the case in
Zyzzyva. Therefore, we assess Zyzzyva with or without batching depending on the

12Although closed-loop microbenchmarks are not always representative of the behavior of real sys-
tems [Schroeder et al. 2006], we use these microbenchmarks to enable fair comparison with previously
reported results, e.g. [Castro and Liskov 2002; Kotla et al. 2010; Clement et al. 2009].

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

The Next 700 BFT Protocols 0:25

experiment. As for the client multicast optimization, we show results for both configu-
rations every time we observe an interesting behavior.

Aliph also implements two optimizations. First, the progress property of Chain is
slightly different from the one described earlier in the paper: Chain aborts requests as
soon as replicas detect that there is no contention (i.e. there is only one active client
since at least 2s). This avoids executing Chain when there is no contention. Second,
Chain replicas add an information in their abort history to specify that they aborted
because of the lack of contention. We modified Backup, so that in such case, it only
commits one request and aborts. Consequently, when there is no contention, Aliph
switches to Quorum, which is very efficient in such a case.

Finally, let us note that the PBFT code base underlies both Zyzzyva and Aliph, which
ensures a fair comparison between these three protocols. To also ensure that the com-
parison with Q/U is fair, we evaluate a simple best-case implementation that uses the
same code base and that is described in [Kotla et al. 2010]. Consequently, all protocols
are implemented in C++, rely on MD5 for computing message digests, and use UMAC
as MAC type. Finally, regarding networking primitives, all protocols use UDP and IP
Multicast, as described in the respective papers. The only exception is Chain that uses
TCP. As our experiments demonstrate, the pipeline pattern of Chain coupled with the
use of TCP gives Chain significant advantage over other protocols under high load.

5.4.1. Latency. We first assess the latency in a system without contention, with a sin-
gle client issuing requests. The improvement of Aliph over Q/U, PBFT, and Zyzzyva
is reported in Table II for all microbenchmarks (0/0, 0/4 and 4/0) and for a maximal
number of server failures f ranging from 1 to 3. We observe that Aliph consistently
outperforms other protocols. The reason why the latency achieved by Aliph is very low
is that it uses Quorum when there is no contention. These results confirm the theo-
retical analysis (see Table I, Section 5.1). The results show that Q/U also achieves a
good latency with f = 1. This is not surprising provided that Q/U and Quorum use the
same communication pattern. Nevertheless, when f increases, the performance of Q/U
decreases significantly. The reason is that Q/U requires 5f+1 replicas and both clients
and servers perform additional MAC computations compared to Quorum. Moreover,
the significant improvement of Aliph over Zyzzyva (31% at f = 1) can be easily ex-
plained by the fact that Zyzzyva requires 3-one-way message delays in the common
case, whereas Aliph (Quorum) only requires 2-one-way message delays.

Table II. Latency improvement of Aliph for the 0/0, 4/0, and 0/4 benchmarks, without contention.

0/0 benchmark 4/0 benchmark 0/4 benchmark
f=1 f=2 f=3 f=1 f=2 f=3 f=1 f=2 f=3

Q/U 8 % 14,9% 33,1% 6,5 % 13,6% 22,3% 4,7% 20,2% 26%
Zyzzyva 31,6 % 31,2% 34,5% 27,7 % 26,7% 15,6% 24,3% 26% 15,6%
PBFT 49,1% 48,8% 44,5% 36,6 % 38,4 % 26% 37,6% 38,2% 29%

5.4.2. Throughput. In this section, we present throughput results obtained running the
0/0, 0/4, and 4/0 microbenchmarks under contention. We do not report results for Q/U
since it is known to perform poorly under contention. Notice that in all the experi-
ments presented in this section, Chain is active in Aliph. The reason is that, due to
contention, there is always a point in time when a request sent to Quorum reaches
replicas in a different order, which results in a switch to Chain. As there are no fail-
ures in the experiments presented in this section, Aliph never switches to Backup.
Consequently, Chain commits all the subsequent requests.

The results presented in this section show that Aliph consistently and significantly
outperforms other protocols, starting from a certain number of clients that depends on

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

0:26 P.L. Aublin et al.

the benchmark. Below this threshold, Zyzzyva achieves higher throughput than other
protocols.

0/0 benchmark. Figure 8 plots the throughput achieved with the 0/0 benchmark by
the various protocols when f = 1. We ran Zyzzyva with and without batching. For
PBFT, we present only the results with batching, since they are substantially better
than those obtained without batching. We observe that Zyzzyva with batching per-
forms better than PBFT, which itself achieves higher peak throughput than Zyzzyva
without batching (this is consistent with the results of [Kotla et al. 2010; Singh et al.
2008]).

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80 90 100

T
ho

ug
hp

ut
 (

K
op

s/
se

c)

Number of clients

Aliph

Zyzzyva (batching)

PBFT

Zyzzyva

Aliph
Zyzzyva (batching)

Zyzzyva
PBFT

Fig. 8. Throughput for the 0/0 benchmark (f=1).

Moreover, Figure 8 shows that with up to 40 clients, Zyzzyva achieves the best
throughput. With more than 40 clients, Aliph starts to outperform Zyzzyva. The peak
throughput achieved by Aliph is 21% higher than that of Zyzzyva. The reason is that
Aliph executes Chain, which uses a pipeline pattern to disseminate requests. This
pipeline pattern brings two benefits: reduced number of MAC operations at the bottle-
neck server, and better network usage: servers send/receive messages to/from a single
server. Nevertheless, the Chain protocol is efficient only if its pipeline is fed — the link
between any server and its successor in the chain is saturated. There are two ways to
feed the pipeline: using large messages (see the next benchmark), or a large number
of small messages (this is the case of the 0/0 benchmark). Provided that in the mi-
crobenchmarks clients invoke requests in closed-loop, it is necessary to have a large
number of clients to issue a large number of requests. This explains why Aliph starts
outperforming Zyzzyva only with more than 40 clients.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 10 20 30 40 50 60

La
te

nc
y

pe
r

re
qu

es
t (

m
s)

Thoughput (Kops/sec)

Aliph

Zyzzyva (batching)

PBFT

Zyzzyva

Aliph
Zyzzyva (batching)

Zyzzyva
PBFT

Fig. 9. Response time vs. throughput for the 0/0 benchmark (f=1).

Figure 9 plots the response time of Zyzzyva (with and without batching), PBFT and
Aliph as a function of the achieved throughput. We observe that Aliph achieves con-
sistently lower response time than PBFT. This stems from the fact that the message
pattern implemented by PBFT is very complex, which increases the response time
and limits the throughput of PBFT. Moreover, up to the throughput of 37Kops/sec,
Aliph has a slightly higher response time than Zyzzyva. The reason is the pipeline
pattern of Chain that results in a higher response time for low to medium throughput,

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

The Next 700 BFT Protocols 0:27

but stays nevertheless reasonable. Moreover, Aliph scales better than Zyzzyva: from
37Kops/sec, it achieves lower response time, since the messages are processed faster
due to the higher throughput ensured by Chain. Hence, messages spend less time in
waiting queues. Finally, we observe that for very low throughput, Aliph has lower re-
sponse time than Zyzzyva. This comes from the fact that Aliph uses Quorum when
there is no contention, which significantly improves the response time of the protocol.

0/4 benchmark. Figure 10 shows the throughput of the various protocols for the 0/4
microbenchmark when f = 1. PBFT and Zyzzyva are using the client multicast opti-
mization. We observe that with up to 15 clients, Zyzzyva outperforms other protocols.
Starting from 20 clients, Aliph outperforms PBFT and Zyzzyva. Nevertheless, the gain
in peak throughput (7,7% over PBFT and 9,8% over Zyzzyva) is lower than the gain
we observed with the 0/0 microbenchmark. This can be explained by the fact that the
dominating cost is now in sending replies to clients. This cost partly masks the cost of
request ordering. In all protocols, there is only one server sending a full reply to the
client (other servers send only a digest of the reply), which explains why the various
protocols achieve a pretty close throughput.

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70

T
h
ro

u
g
h
p
u
t

(K
o
p
s
/s

e
c
)

Number of clients

PBFT
Zyzzyva

Aliph

Fig. 10. Throughput for the 0/4 benchmark (f=1).

4/0 benchmark. Figure 11 shows the results of Aliph, PBFT and Zyzzyva for the
4/0 microbenchmark with f = 1. Notice the logarithmic scale for the x-axis, that we
use to better highlight the behavior of the various protocols with small numbers of
clients. For PBFT and Zyzzyva, we plot curves both with and without client multicast
optimization. The graph shows that with up to 3 clients, Zyzzyva outperforms other
protocols. With more than 3 clients, Aliph significantly outperforms other protocols.
Its peak throughput is about 360% higher than that of Zyzzyva. The reason why Aliph
is very efficient under high load and when requests are large was explained earlier
in the context of the 0/0 benchmark. We attribute the poor performance of PBFT and
Zyzzyva to the fact that when IP Multicast is used with large messages, this induces
message losses that are inefficiently handled by the available prototypes. Moreover, we
explain the performance drop observed for Zyzzyva and PBFT when the client multi-
cast optimization is used (Fig. 11) by the fact that enabling this optimization increases
the number of message losses (due to a higher number of message collisions).

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

0:28 P.L. Aublin et al.

 0

 5

 10

 15

 20

 1 10

T
ho

ug
hp

ut
 (

K
op

s/
se

c)

Number of clients

Aliph

PBFT (client multicast)

PBFT (primary multicast)

Zyzzyva (primary multicast)

Zyzzyva (client multicast)

Aliph
Zyzzyva (primary multicast)

Zyzzyva (client multicast)
PBFT (primary multicast)

PBFT (client multicast)

Fig. 11. Throughput for the 4/0 benchmark (f=1).

5.4.3. Impact of the request size. In this experiment, we study how protocols are im-
pacted by the size of requests. Figure 12 shows the peak throughput of Aliph, PBFT
and Zyzzyva as a function of the request size for f = 1 (the response size is kept at 0k).
To obtain the peak throughput of PBFT and Zyzzyva, we benchmarked both protocols
with and without the client multicast optimization and with different batching sizes
for Zyzzyva. Interestingly, the behavior we observe is similar to that observed using
simulations in [Singh et al. 2008]: the performance gap between PBFT and Zyzzyva
diminishes with the increase in payload. Indeed, starting from 128B payloads, both
protocols have almost identical performance. Figure 12 also shows that Aliph sustains
high peak throughput with all message sizes, which is again the consequence of Chain
being active under contention.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 10 100 1000

T
h
ro

u
g
h
p
u
t

(K
o
p
s
/s

e
c
)

Request size (B)

PBFT
Zyzzyva

Aliph

Fig. 12. Peak throughput as a function of the request size (f=1).

5.4.4. Fault scalability. One important characteristic of BFT protocols is their behavior
when the number of tolerated server failures f increases. Figure 13 depicts the per-
formance of Aliph for the 4/0 benchmark when f varies between 1 and 3. We do not
present results for PBFT and Zyzzyva as their peak throughput is known to suffer only
a slight impact [Kotla et al. 2010]. Figure 13 shows that this is also the case for Aliph.
The peak throughput at f = 3 is only 3,5% lower than that achieved at f = 1. We also
observe that the number of clients that Aliph requires to reach its peak throughput
increases with f . This can be explained by the fact that Aliph uses Chain under con-
tention. The length of the pipeline used in Chain increases with f . Hence, more clients
are needed to feed the Chain and reach the peak throughput.

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

The Next 700 BFT Protocols 0:29

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 10 20 30 40 50 60

T
h
ro

u
g
h
p
u
t

(K
o
p
s
/s

e
c
)

Number of clients

f = 1
f = 2
f = 3

Fig. 13. Impact of the number of tolerated failures f on the Aliph throughput.

5.4.5. Behavior of Aliph in case of faults. In this section, we assess the behavior of
Aliph when one replica crashes. The experiment proceeds as follows. We consider 4
replicas (f = 1) and one client that issues 15,000 requests. After the client sends 2,000
requests, we crash one replica, which recovers 10s later. Consequently, during 10s,
only 3 replicas are active. We compare two strategies: in the first strategy, when Aliph
switches to Backup, Backup always commits k = 1 request. In the second strategy,
when Aliph switches to Backup, it commits k = 2i, where i is the number of invoca-
tions of Backup since the beginning of the experiment. Note that in its current version,
Aliph combines both strategies by exponentially increasing k, while maintaining the
exponential curve initially very flat for reasons discussed in Section 4.3.

The behavior of Aliph with the first strategy is depicted in Figure 14(a). When only 3
replicas are active, Quorum and Chain cannot commit requests and Aliph switches to
Backup for every single request. We depict on the y-axis both the throughput achieved
by Aliph and the periods during which Backup is active. Not surprisingly, the through-
put of Aliph is very low in this case.

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10 12 14 16 18 20

off

on

T
h
ro

u
g
h
p
u
t

(k
o
p
s
/s

)

S
e
rv

ic
e
 s

ta
te

Time (s)

Aliph
Backup state

(a) Behavior under faults, when Aliph switches to
Backup for one request.

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10 12 14 16 18

off

on

T
h
ro

u
g
h
p
u
t

(k
o
p
s
/s

)

S
e
rv

ic
e
 s

ta
te

Time (s)

Aliph
Backup state

(b) Behavior under faults, when Aliph switches to
Backup for 2i requests.

Fig. 14. Behavior of Aliph in case of faults.

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

0:30 P.L. Aublin et al.

Figure 14(b) shows the behavior of Aliph with the second strategy. We observe that
the throughput is significantly higher because Backup is used to process an exponen-
tially increasing number of requests. We can also observe that, although the 4 replicas
are active at time t = 11s, Aliph switches back to Quorum only around time t = 14s.
This is due to the fact that Backup had to process 8,192 requests before Aliph could
switch. We point out that if the replica is down for a long time, Aliph will end up exe-
cuting Backup for a very large number of requests. This means that, during a very long
time period, the performance of Aliph will be that of Backup. We therefore periodically
reset the number k of requests that Backup processes before aborting.

5.4.6. Dynamic workload. Finally, we study the performance of Aliph under a dynamic
workload (i.e., fluctuating contention). We compare its performance to that achieved
by Zyzzyva and by Chain alone. We do not present results for Quorum alone as it does
not perform well under contention. The experiments consists in having 30 clients is-
suing requests of different sizes, namely, 0k, 0.5k, 1k, 2k, and 4k, with response size
kept at 0k. Clients do not send requests all at the same time: the experiment starts
with a single client issuing requests. Then we progressively increase the number of
clients until it reaches 10. We then simulate a load spike with 30 clients simultane-
ously sending requests. Finally, the number of clients decreases, until there is only one
client remaining in the system.

Figure 15 shows the performance of Aliph, Zyzzyva, and Chain. For each protocol,
clients were invoking the same number of requests. Moreover, requests were invoked
after the preceding clients had completed their bursts. First, we observe that Aliph
is the most efficient protocol: it completes the experiment in 42s, followed by Zyzzyva
(68.1s), and Chain (77.2s). Up to time t = 15.8s, Aliph uses Quorum, which performs
much better than Zyzzyva and Chain. Starting at t = 15.8, contention becomes too high
for Quorum, which switches to Chain. At time t = 31.8s, there is only one client in the
system. After 2s spent with only one client in the system, Chain in Aliph starts abort-
ing requests due to the low load optimization described earlier. Consequently, Aliph
switches to Backup and then to Quorum. This explains the increase in throughput ob-
served at time t = 33.8s. We also observe on the graph that Chain and Aliph are more
efficient than Zyzzyva when there is a load spike: they achieve a peak throughput
about three times higher than that of Zyzzyva. On the other hand, Chain and Aliph
have slightly lower performance than Zyzzyva under medium load (i.e., from 16s to
26s on the Aliph curve). This suggests an interesting BFT protocol that would combine
Quorum, Zyzzyva, Chain and Backup.

6. MAKING ALIPH ROBUST: R-ALIPH
The Aliph protocol presented in Section 5 achieves excellent performance in the “com-
mon” case, i.e., when the network is synchronous and when both clients and replicas
are benign. Unfortunately, as we show in this section, a Byzantine client or a Byzantine
replica can attack this protocol and drastically reduce its performance. This fragility
of BFT protocols is well-known and motivated the development of three so-called ro-
bust protocols: Spinning [Veronese et al. 2009], Prime [Amir et al. 2011], and Aard-
vark [Clement et al. 2009]. In this section, we first study the performance achieved
by Aliph when clients or replicas attack the protocol (Sec. 6.1). We then briefly de-
scribe existing robust protocols and compare their performance under the same attacks
(Sec. 6.2). We then describe R-Aliph, a robust version of the Aliph protocol (Sec. 6.3). Fi-
nally, we evaluate the performance of R-Aliph both with and without attacks (Sec. 6.4).

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

The Next 700 BFT Protocols 0:31

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 10 20 30 40 50 60 70 80

T
h
o
u
g
h
p
u
t

(K
o
p
s
/s

e
c
)

Time (s)

Aliph
Zyzzyva

Chain

Fig. 15. Throughput under dynamic workload.

6.1. Aliph under attack
We study the performance of Aliph under four different, representative attacks in-
spired from those used in [Clement et al. 2009]:

— Client flooding: in this attack, one of the clients is Byzantine: it implements a brute
force denial of service attack by repeatedly sending 9kB messages to the replicas.

— Malformed client requests: in this attack, one of the clients is Byzantine: it sends
requests with an invalid authenticator that can only be authenticated by a subset
of the replicas (including the primary in Backup and the head in Chain).

— Processing delay: in this attack, one Byzantine replica (the primary in Backup
(PBFT), the head in Chain, and a randomly chosen replica in Quorum) delays the
ordering of requests it receives from clients by 10ms.

— Replica flooding: in this attack, one of the replicas (different from the primary in
Backup and the head in Chain) is Byzantine: it fails to process protocol messages
and implements a brute force denial of service attack by repeatedly sending 9kB
messages to other replicas.

Table III. Peak throughput (req/s) of Aliph both in the absence of attacks and under various
attacks (0/0 micro-benchmark).

Without Client Malformed Processing Replica
attack flooding requests delay (10ms) flooding

Aliph 55575 30733 (-44,7%) 0 (-100%) 2629 (-95,3%) 0 (-100%)

The performance results for the 0/0 micro-benchmark are reported in Table III (we
observed similar behavior with the 4/0 and 0/4 micro-benchmarks).13

We observe that the throughput of Aliph drops to 0 when malformed requests are
sent or when one replica floods other replicas. This is explained by the fact that in both
cases, Quorum and Chain are not able to commit requests, which induces a switching
to Backup. Backup relies on PBFT which is unable to sustain a non-null throughput
in these cases as already observed in [Clement et al. 2009].

13Notice that in order to accommodate the networking requirements of protocols that are studied later
in this section, these experiments have been performed on another experimental testbed made of 8-core
machines. Each machine has ten 1GB network cards and runs Linux 2.6.35. This explains the slight perfor-
mance difference with results reported in previous sections.

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

0:32 P.L. Aublin et al.

Regarding the “processing delay” attack, the throughput of Aliph drops to about 2629
requests per seconds. This result is explained by the fact that requests are invoked
in a closed-loop manner, i.e., a client does not invoke a new request before it gets a
reply for a previous one. Consequently, delaying the ordering of requests decreases the
throughput achieved by the protocol. Moreover, the overall latency perceived by the
clients is below the threshold beyond which they timeout, panic and trigger a switching
to Backup. Consequently, the throughput remains at this very low value.

Finally, regarding the “client flooding” attack, the throughput of Aliph decreases,
but less than with the other attacks. This is explained as follows. When running under
this attack, Quorum is not able to commit requests, which induces a switch to Chain.
The latter relies on TCP, and, consequently, correct clients can issue requests at a high
throughput despite the fact that a malicious client is trying to flood the network.

6.2. A brief overview of “robust” BFT protocols
The fact that efficient BFT protocols are often fragile (i.e., perform poorly under at-
tack) motivated the development of so-called robust BFT protocols: Spinning [Veronese
et al. 2009], Prime [Amir et al. 2011], and Aardvark [Clement et al. 2009]. These pro-
tocols aim at achieving good performance when the network is synchronous, despite
the presence of Byzantine faulty clients and replicas. Below, we briefly describe these
three protocols.

Spinning [Veronese et al. 2009] is a robust BFT protocol based on PBFT [Castro and
Liskov 2002]. The idea underlying Spinning is to perform regular primary changes af-
ter each (fixed-size) batch of requests in order to limit the impact a Byzantine primary
can have. Moreover, to further limit the impact of Byzantine primaries, Spinning uses
a blacklisting mechanism that works as follows. Requests are sent to all replicas and,
as soon as a non-primary replica receives a request, it starts a timer (Stimeout) and
waits for a request ordering message from the primary for this request. In case of a
timeout, the current primary is blacklisted (i.e., it will no longer become a primary in
the future14) and Stimeout is doubled.

Another robust protocol that has been designed is Prime [Amir et al. 2011]. In Prime,
clients can send their requests to any replica in the system. Replicas periodically ex-
change the requests they receive from clients. Consequently, replicas are aware of the
set of requests that should be ordered (i.e., for which they expect ordering messages
from the primary). Moreover, even when there are no requests to order, the primary
must periodically send (empty) ordering messages. That way, non-primary replicas ex-
pect to receive ordering messages at a given frequency. To improve the accuracy of
the expected frequency, replicas monitor the network performance. Specifically, repli-
cas periodically measure the round-trip time between each pair of them. This measure
allows replicas to compute the maximum delay that should elapse between two con-
secutive sending of ordering messages by a correct primary. If the primary becomes
slower than what is expected by the replicas, then it is replaced.

Finally, a third robust protocol that has been designed is Aardvark [Clement et al.
2009], also based on PBFT. Aardvark implements a number of mechanisms to ensure
good performance despite the presence of Byzantine clients and replicas. First, the pro-
tocol limits the degradation that Byzantine clients can cause by isolating their traffic
and by implementing a smart authentication mechanism that limits the impact of
malformed client requests. Second, the protocol limits the impact that a faulty replica
can have by isolating the traffic induced by the different replicas: namely, each replica
uses a distinct NIC to communicate with every other replica. Third, the protocol lim-

14If f replicas are already blacklisted, then the oldest one is removed from the blacklist, to ensure the
liveness of the system.

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

The Next 700 BFT Protocols 0:33

its the damage that a faulty primary may cause. To this end, all replicas monitor the
throughput at which the primary is ordering requests. During the first five seconds
of the primary being active, the primary is expected to achieve a throughput at least
equal to 90% of the maximum throughput achieved by the primary replicas of the n
preceding views (where n is the number of replicas). The expected throughput is then
periodically raised by a factor of 0.01. As soon as a primary does not meet the through-
put expectations, a primary change occurs.

Table IV. Peak throughput (req/s) of Spinning, Prime, and Aardvark both in the absence of attacks and
under various attacks (0/0 micro-benchmark).

Without Client Malformed Processing Replica
attack flooding requests delay (10ms) flooding

Spinning 37116 19164 (-48,4%) 36986 (-0,3%) 18529 (-50,1%) 21975 (-40,8%)
Prime 6682 1445 (-78,4%) 6596 (-1,3%) 3648 (-45,4%) 0 (-100%)
Aardvark 31510 30280 (-3.9%) 31336 (-0,1%) 25997 (-17.5%) 28599 (-9,2%)

In Table IV, we report the performance of Spinning, Prime, and Aardvark for the
0/0 micro-benchmark, both in the absence of attacks and under the three attacks de-
scribed in the previous section15. We do use a slightly modified “malformed request”
attack due to the fact that the three studied protocols use signatures to authenticate
messages rather than MAC authenticators. Hence, in this section, a malformed re-
quest is a request with an invalid signature.

We can make several observations. First, in the absence of attacks, robust pro-
tocols are much less efficient than fast BFT protocols, namely ZLight and Chain.
For instance, the throughput of Chain is 76% higher than that of Aardvark. This
performance difference between fast and robust protocols is expected and well-
known [Clement et al. 2009]: it is due to the performance overhead induced by the
various mechanisms that robust protocols implement to limit the impact of Byzantine
clients and replicas. Second, we observe that, overall, the performance of robust pro-
tocols is less impacted by attacks than that of Aliph. Third, we observe that there are
significant differences among robust protocols. Aardvark consistently achieves better
performance under attack than both Spinning and Prime. The reason is that Aardvark
combines accurate monitoring of the primary progress and network isolation between
pairs of replicas, whereas Spinning and Prime only monitor the primary progress.

6.3. R-Aliph, a robust version of Aliph
The conclusion we can draw from the two previous sections is that distributed system
designers seemingly have the choice between either (i) a BFT protocol (e.g., Aliph) that
achieves very good performance when there are no attacks, but that achieves very bad
or no throughput under attacks, or (ii) a BFT protocol (e.g, Aardvark) that achieves a
lower throughput when there are no attacks (about 43 % less efficient than Aliph in
the 0/0 micro-benchmark), but that is only slightly impacted by attacks.

In this section, we show how, using Abstract, we designed R-Aliph, a protocol that
almost achieves the best of both worlds: R-Aliph is almost as efficient as Aliph when
there are no attacks, and as efficient as Aardvark when there are attacks. To achieve
this goal, we built R-Aliph following four main principles:

— (Principle P1) Backup is implemented on top of Aardvark (and is thus resilient to
attacks),

15We use the original code bases for the three protocols. Nevertheless, we improved the networking stack of
the Spinning protocol and enabled batching in order to increase its performance.

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

0:34 P.L. Aublin et al.

— (Principle P2) Quorum and Chain are only executed if they sustain a better
throughput than the one Backup (i.e., Aardvark) would sustain,

— (Principle P3) Quorum and Chain are only executed if they are fair with respect to
different clients, and

— (Principle P4) The time needed to switch among the three protocols is not impacted
by the presence of Byzantine clients and Byzantine replicas.

It is trivial to enforce Principle P1. We describe below how the remaining three
principles are enforced.

In order to make sure that R-Aliph executes Quorum or Chain only if they sustain a
better throughput that the one Backup would sustain (see Principle P2), replicas exe-
cuting Quorum or Chain periodically monitor the throughput achieved by the protocol,
and check that it is higher than an expected throughput. If a replica detects that this
is not the case, it becomes unhappy, stops processing requests and triggers a protocol
switching (we explain this later on, under Principle P4). In the following, we explain
how replicas in R-Aliph: (a) set their throughput expectations, and (b) monitor the
current throughput.

(a) In setting throughput expectation thresholds, R-Aliph replicas leverage the
throughput expectations that are computed inside Backup (i.e., Aardvark) when
it is executed. More specifically, when R-Aliph switches to Quorum or Chain,
the throughput that each replica ri expects is the maximum over all throughput
expectations ri computed when executing Backup (i.e., Aardvark).

(b) When executing Quorum or Chain (just like with Zyzzyva/ZLight), a replica cannot
accurately compute the throughput based on what it observes locally, i.e., neither
based on the requests it orders, nor on the checkpoint messages it receives from
other replicas. For instance, a Byzantine replica in Quorum (or Zyzzyva/ZLight)
can send a checkpoint message pretending that it executed a request, but postpone
the sending of the reply to that request, thus reducing the overall throughput with-
out being caught by the client (e.g., if the client receives the reply before the timer
expires, as in the “processing delay” attack described in Section 6.1). Similarly, the
tail replica in Chain can send a checkpoint message pretending that it replied to a
client, but postpone the sending of the reply to the client.
Consequently, the only way for replicas to accurately monitor the throughput in
R-Aliph is to ask clients to send to replicas feedback messages confirming they
committed the requests they previously sent. 16 In R-Aliph, Quorum and Chain
replicas calculate the throughput using feedback messages every 128 committed
requests with a replica taking feedback into account only for a request it previously
executed. In our prototype, to limit the overhead of feedback messages, clients only
send them every 5 requests they commit. Moreover, in the case of Quorum, feed-
back messages are piggybacked to “common-case” requests within REQ messages.
In addition, if a replica does not perform another throughout calculation in time
Backup would have committed 128 requests (see also point (a)), a replica immedi-
ately becomes unhappy and stops processing further requests.

In order to make sure that R-Aliph executes Quorum and Chain only in case clients
are treated fairly (Principle P3), the replicas implement the following mechanism
(inspired by Aardvark): replicas track client requests: they check that, after having

16Notice here that some BFT protocols can rely on replicas only to monitor throughput — this is the case
with protocols that have an explicit commit phase among replicas, as in PBFT and Aardvark.

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

The Next 700 BFT Protocols 0:35

received a request req, no single client issues feedback for two requests received after
req (which might be a sign that one of the replicas is unfair and delays req). If a replica
detects that this is not the case, it stops processing requests and triggers a protocol
switching (see Principle P4 implementation below for details on switching). Observe
that replicas in Quorum receive all requests directly from clients and can thus accu-
rately track requests. This is not the case for Chain: the head can forward requests
in an arbitrary order, thus preventing accurate tracking. The only way to make sure
that replicas accurately track requests is to have clients send feedback messages to
indicate they issued some requests. To limit the overhead of these messages in Chain,
they are piggybacked to feedback messages containing information about committed
requests.

Finally, in order to ensure that the time needed to switch between the three protocols
is not impacted by Byzantine clients and/or Byzantine replicas (Principle P4), R-Aliph
relies on three main ideas.

(a) First, each replica bounds the number of uncheckpointed requests it adds to its
local history. This in turn bounds the amount of state that might need to be
transferred during the switching. In our implementation, this bound is set to 384
requests, which is not limiting performance (i.e., setting this bound to a higher
value does not increase the peak throughput achieved by R-Aliph).

(b) Second, R-Aliph leverages the isolation of networking and processing resources
that Aardvark (that R-Aliph uses in Backup) anyway requires. More precisely,
as illustrated in Figure 16, (i) each replica uses a dedicated NIC to communicate
with clients – note that this particular NIC is also used in Chain to exchange
common-case protocol messages among replicas, (ii) each replica uses a dedicated
set of NICs to communicate with other replicas, (iii) each replica picks messages
on the set of NICs dedicated to other replicas in a round-robin manner, and (iv)
each replica disables a NIC dedicated to communicating with another replica if
the latter sends invalid messages or much more messages than the other replicas
on average. This combination of mechanisms ensures a robust implementation
of point-to-point channels between each pair of replicas: i.e., even if a Byzantine
client or a Byzantine replica floods the network, this will not prevent any pair of
correct replicas to communicate efficiently.

(c) Third, clients are not involved in the switching protocol (although they can panic
if they want) — otherwise, since a replica is connected to all clients using a single
NIC, a Byzantine client could perform a denial of service attack and arbitrarily de-
lay the protocol switching. This is achieved as follows. A replica wishing to trigger
protocol switching (because it detects that Quorum or Chain either do not sustain
adequate throughput or are unfair, or if some client panics) acts itself as a client:
it invokes a noop request on the current Abstract (i.e., Quorum or Chain) and im-
mediately panics (without waiting for the timer in Steps Q1/C1). The replica then
completes Step P3 of the panicking/aborting subprotocol and switches, acting as
a client, to the next Abstract instance. Then, since (i) the size of local histories is
limited, (ii) clients are not involved in the aborting protocol (beyond the ability
to panic), and (iii) each pair of replicas is connected by a dedicated point-to-point
channel, we are guaranteed that Byzantine clients and/or Byzantine replicas can-
not impact the upper bound on time required to perform a protocol switching.

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

0:36 P.L. Aublin et al.

������

��	�
��
��������

������

����������
��

�����

����������
��

������

�

���

���

���

��������	
�����

�
�

�

�
�

�

�
�

�

���

�

�

�

Fig. 16. Architecture of R-Aliph replicas.

6.4. Evaluation
In this section, we evaluate R-Aliph. We first assess its overhead with respect to Aliph.
We then study its behavior under attacks. Finally, we assess the worst case switching
time under attack.

6.4.1. Overhead of R-Aliph. R-Aliph has an overhead that is mainly caused by feedback
messages sent by clients to notify replicas of the Chain protocol that they sent and
committed requests. To assess this overhead, we run an experiment without attacks
and compare the throughput of R-Aliph to that achieved by Aliph. We vary the request
size from 0kB to 10kB and we use null replies (we obtained comparable results with
non-null reply sizes). Results are reported in Figure 17. We can make two observa-
tions. First, we observe that the maximum throughput decrease is below 6%. This is
very reasonable: in “common” case, R-Aliph is still 65% more efficient than Aardvark.
Second, we observe that the overhead of R-Aliph decreases when the size of requests
increases. For instance, with 4kB requests, the throughput decrease of R-Aliph with
respect to Aliph is below 3%. The reason why the overhead decreases when increasing
the request size is that the relative size of feedback client messages becomes lower.

6.4.2. Behavior of R-Aliph under attack. We assessed the performance of R-Aliph under
the attacks described in Section 6.1. Figure 18 presents the behavior of R-Aliph during
the “processing delay” attack. We have observed similar behaviors for other attacks.
Therefore, to avoid redundancy, we do not provide figures for other attacks. On the
X axis, we report the time (in seconds). On the Y axis, we report both the through-
put that was expected by replicas (dashed line) and the throughput that R-Aliph ac-
tually sustained (solid line). The dotted vertical lines represent protocol switchings.
The experiment is as follows. 100 clients inject 8B requests in a closed-loop manner
and receive 8B replies during all the experiment. Initially, R-Aliph executes Backup,

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

The Next 700 BFT Protocols 0:37

 0

 1

 2

 3

 4

 5

 6

 7

0kB 1kB 2kB 3kB 4kB 5kB 6kB 7kB 8kB 9kB 10kB

T
h
ro

u
g
h
p
u
t

d
e
c
re

a
s
e
 (

%
)

Request size

Fig. 17. Throughput decrease of R-Aliph with respect to Aliph for various request sizes and null replies.

configured to execute a fixed amount of requests. There is no ongoing attack yet and
Backup sustains a throughput of about 31500 req/s, which is in line with what we pre-
viously reported in Table IV. Then, at time 55s, R-Aliph switches to Quorum. As there
is contention, Quorum is not able to commit requests and immediately aborts. Sub-
sequently, R-Aliph switches to Chain. The latter sustains a much higher throughput
than Backup (and thus a much higher throughput than that expected by replicas). At
time 114s, the attack starts. The replica acting as head in Chain adds a 10ms process-
ing delay to all messages it receives. We have profiled the system and observed that
a correct replica in the Chain starts noticing that Chain is not behaving properly and
triggers a switching about 7ms after the attack started. Again, system profiling shows
that it takes about 63ms for Chain to switch to Backup. The latter executes requests
despite the attack. Its throughput is slightly impacted (-21% on average). Indeed, we
can observe periodic performance drops that are explained by the fact that the Aard-
vark protocol used in Backup regularly changes the primary replica and one fourth
of the time, the elected primary is the Byzantine replica that adds a 10ms processing
delay. This induces a short performance drop before a new primary is elected. At time
187s, after Backup executed a fixed amount of requests, R-Aliph switches to Quorum.
The latter is not able to commit requests (because of contention). R-Aliph subsequently
switches to Chain that does not sustain the required throughput (because of the at-
tack). Profiling reveals that it again takes about 5ms for a correct replica in the Chain
to notice that Chain is slow and about 20ms to switch to Backup. Note that switching
at around 187s is faster compared to the switching at around 114s when the attack
was initially launched. Profiling reveals that this is due to the fact that the history of
replicas contains a much smaller amount of requests.

6.4.3. Worst case switching time. In this section, we assess the worst case switching time
both without attacks and under the different attacks described in Section 6.1. The time
we measure corresponds to the elapsed time between the creation of the first panicking
message and the time when the replicas have switched to the next protocol. To assess
the worst case switching time, we perform several switching in a loop, as explained in
Section 4.6, with half of the replicas having a full request history (384 10kB requests)
and half of the replicas having an empty request history. This configuration induces
the largest possible state transfer among replicas. Results are reported in Table V.
We observe that the worst case switching time is low and that it is only marginally
impacted in the presence of attacks. This is easily explained by the fact that (i) the
processing and networking resources needed by the switching mechanism are isolated,
and (ii) clients are not involved in the switching protocol. Therefore, correct replicas

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

0:38 P.L. Aublin et al.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 50 100 150 200 250

T
h

ro
u

h
g

p
u

t
in

 r
e

q
/s

Time in sec

Observed throughput
Required throughput

Fig. 18. Behavior of R-Aliph under a “processing delay” attack.

can perform switching without being impacted by the presence of Byzantine replicas
and clients.

Table V. Worst case switching time (in ms) of R-Aliph both in the absence
of attacks and under various attacks.

Without Client Replica is Processing Replica
attack flooding unfair delay (10ms) flooding
60.36 62.49 60.52 63.92 63.24

7. RELATED WORK
The idea of aborting if “something goes wrong” is old. It underlies for instance the
seminal two-phase commit protocol [Gray 1978]: abort can be decided if there is a
failure or some database server votes ”no”. The idea was also explored in the context of
mutual exclusion: a process in the entry section can abort if it cannot enter the critical
section [Jayanti 2003]. Abortable consensus was proposed in [Chen 2007] and [Boichat
et al. 2003]. In the first case, a process can abort if a majority of processes cannot be
reached whereas, in the second case, a process can abort if there is contention. The
latter idea was generalized for arbitrary shared objects in [Attiya et al. 2005] and
then [Aguilera et al. 2007]. In [Aguilera et al. 2007], a process can abort and then
query the object to seek whether the last query of the process was performed. This
query can however abort if there is contention. Our notion of abortable state machine
replication is different. First, the condition under which Abstract can abort is a generic
parameter: it can express for instance contention, synchrony or failures. Second, in
case of abort, Abstract returns (without any further query) what is needed for recovery
in a Byzantine context; namely, an unforgeable history. This, in turn, can be used to
invoke another, possibly stronger, Abstract. This ability is key to the composability of
Abstract instances.

Several examples of speculative protocols, distinguishing an optimistic phase from
a recovery one, were discussed in the survey of Pedone [Pedone 2001]. These specu-
lation ideas were used in the context of Byzantine state machine replication, e.g., in
HQ [Cowling et al. 2006] and Zyzzyva [Kotla et al. 2010]. We are however the first
to clearly separate the phases and encapsulate them within first class, well-specified,

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

The Next 700 BFT Protocols 0:39

modules, that can each be designed, tested and proved independently. In a sense, Ab-
stract enables the construction of a BFT protocol as the composition of as many (grace-
fully degrading) phases as desired, each with a “standard” interface. This allows for an
unprecedented flexibility in BFT protocol design that we illustrated with Aliph, a BFT
protocol that combines three different phases. Similarly, with R-Aliph we illustrated
how one can quickly devise and implement a BFT protocol ensuring good performance
despite attacks. While we described Aliph and R-Aliph and showed that, albeit sim-
ple, they outperform existing BFT protocols, Aliph and R-Aliph are simply the starting
point for Abstract.

To maintain the assumption of a threshold f of replica failures realistic, BFT sys-
tems need to ensure failure independence [Gashi et al. 2007; Garcia et al. 2011]. An es-
tablished technique used in ensuring failure independence is n-version programming
which mandates a different BFT implementation for each replica, with the goal of re-
ducing the probability of identical software faults across replicas. While Abstract does
not alleviate the need for n-version programming, this may reveal less costly and more
feasible due to the inherently reduced code sizes and complexities involved with Ab-
stract implementations. In addition, abstractions like BASE [Castro et al. 2003], that
enable reuse of off-the-shelf service implementations, can be used complementarily to
our approach.

Since the publication of the preliminary, conference version of this work [Guerraoui
et al. 2010], several papers that exploit Abstract-like reconfiguration have been pub-
lished. In particular, CheapBFT [Kapitza et al. 2012] implements Abstract-like recon-
figuration with switching through replicas assuming an FPGA-based trusted subsys-
tem to reduce the resource overhead of BFT. In the common case, CheapBFT relies on
a novel, optimistic protocol that uses f + 1 replicas whereas, in the case of failures,
CheapBFT falls back to a protocol called MinBFT [Veronese et al. 2013] (itself also
based on a trusted subsystem) that uses 2f + 1 replicas. It is precisely for such usages
demonstrated by CheapBFT, that diverge from the classical BFT model we assume
in this paper, that we defined Abstract as a specification with properties that reason
about clients’ histories rather than about the state and the number of replicas that
implement Abstract. Indeed, Abstract specification deliberately does not reason about
the number of replicas, their local state or state relative to other replicas, nor about
the fault model. By adopting such an approach, we do not restrict the use of Abstract
to the classical BFT model, but also allow for the use of Abstract in the trusted BFT
model [Kapitza et al. 2012], vanilla crash-failure model, or any other failure model.

8. CONCLUSION AND FUTURE WORK
Byzantine fault tolerant state machine replication (BFT) protocols are notoriously dif-
ficult to design, implement and prove correct. In this paper, we presented Abstract, a
framework for the design and reconfiguration of abortable replicated state machines.
Using Abstract, we incrementally developed new BFT protocols with a fraction of the
complexity required to develop full-fledged BFT protocols. We build BFT protocols
as sequences of Abstract instances, each designed, implemented and proved indepen-
dently. Such protocols are not only simpler to design but also efficient and robust.

In this paper, we have implemented several BFT protocols (AZyzzyva, Aliph, and
R-Aliph) that consist of lightweight Abstract implementations (ZLight, Quorum and
Chain) designed to be efficient in the “common” case, typically when the system is
synchronous and there are no replica faults. In all protocols we reused existing BFT
protocols such as PBFT [Castro and Liskov 2002] and Aardvark [Clement et al. 2009]
to handle the faulty case, by wrapping them into a powerful Abstract instance called
Backup.

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

0:40 P.L. Aublin et al.

In future work, several directions can be interesting to explore, e.g., using the con-
cepts that underly Abstract in the context of Byzantine-resilient storage [Hendricks
et al. 2007], or devising signature-free switching. Moreover, we believe that an inter-
esting research challenge lies in devising effective heuristics for dynamic switching
among Abstract instances. While we described Aliph and R-Aliph, and showed that,
albeit simple, they outperform existing BFT protocols, Aliph and R-Aliph are simply
the starting point for Abstract. The idea of dynamic switching depending on the system
conditions seems very promising; such a scheme could monitor the current system con-
ditions and implement smart heuristics to switch to the seemingly most appropriate
Abstract instance.

References
Michael Abd-El-Malek, Gregory R. Ganger, Garth R. Goodson, Michael K. Reiter, and Jay J. Wylie. 2005.

Fault-scalable Byzantine fault-tolerant services. In Proceedings of the Symposium on Operating Systems
Principles (SOSP). ACM.

Marcos K. Aguilera, Svend Frolund, Vassos Hadzilacos, Stephanie L. Horn, and Sam Toueg. 2007. Abortable
and query-abortable objects and their efficient implementation. In Proceedings of the ACM Symposium
on Principles of distributed computing (PODC).

Yair Amir, Brian A. Coan, Jonathan Kirsch, and John Lane. 2011. Prime: Byzantine Replication under
Attack. IEEE Trans. Dependable Sec. Comput. 8, 4 (2011), 564–577.

Hagit Attiya, Rachid Guerraoui, and Petr Kouznetsov. 2005. Computing with Reads and Writes in the Ab-
sence of Step Contention. In Proceedings of the International Conference on Distributed Computing
(DISC).

Ken Birman, Dahlia Malkhi, and Robbert Van Renesse. 2010. Virtually Synchronous Methodology for Dy-
namic Service Replication. Technical Report MSR-TR-2010-151.

Romain Boichat, Partha Dutta, Svend Frölund, and Rachid Guerraoui. 2003. Deconstructing Paxos. SIGACT
News in Distributed Computing 34, 1 (2003), 47–67. DOI:http://dx.doi.org/10.1145/637437.637447

Francisco V. Brasileiro, Fabı́ola Greve, Achour Mostéfaoui, and Michel Raynal. 2001. Consensus in One
Communication Step. In Proceedings of the International Conference on Parallel Computing Technolo-
gies (PaCT).

Miguel Castro and Barbara Liskov. 2002. Practical Byzantine fault tolerance and proactive recovery. ACM
Trans. Comput. Syst. 20, 4 (Nov. 2002), 398–461. DOI:http://dx.doi.org/10.1145/571637.571640

Miguel Castro, Rodrigo Rodrigues, and Barbara Liskov. 2003. BASE: Using abstraction to improve
fault tolerance. ACM Transactions on Computer Systems 21 (August 2003), 236–269. Issue 3.
DOI:http://dx.doi.org/10.1145/859716.859718

Tushar D. Chandra, Robert Griesemer, and Joshua Redstone. 2007. Paxos made live: an engineering per-
spective. In Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC). ACM.
DOI:http://dx.doi.org/10.1145/1281100.1281103

Wei Chen. 2007. Abortable consensus and its application to probabilistic atomic broadcast. Technical Report
MSR-TR-2006-135.

Allen Clement, Edmund Wong, Lorenzo Alvisi, Mike Dahlin, and Mirco Marchetti. 2009. Making Byzan-
tine fault tolerant systems tolerate Byzantine faults. In Proceedings of the Symposium on Networked
Systems Design and Implementation (NSDI).

James Cowling, Daniel Myers, Barbara Liskov, Rodrigo Rodrigues, and Liuba Shrira. 2006. HQ replication:
a hybrid quorum protocol for Byzantine fault tolerance. In Proceedings of the Symposium on Operating
Systems Design and Implementation (OSDI). USENIX Association. http://portal.acm.org/citation.cfm?
id=1298455.1298473

Dan Dobre and Neeraj Suri. 2006. One-step Consensus with Zero-Degradation. In Proceedings of the 2004
International Conference on Dependable Systems and Networks (DSN).

Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus in the presence of partial synchrony.
J. ACM 35 (April 1988), 36. Issue 2. DOI:http://dx.doi.org/10.1145/42282.42283

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. 1985. Impossibility of distributed consensus
with one faulty process. J. ACM 32, 2 (April 1985), 374–382.

Miguel Garcia, Alysson Bessani, Ilir Gashi, Nuno Neves, and Rafael Obelheiro. 2011. OS diversity for intru-
sion tolerance: Myth or reality?. In Proceedings of the 2011 IEEE/IFIP 41st International Conference
on Dependable Systems&Networks (DSN ’11). IEEE Computer Society, Washington, DC, USA, 383–394.
DOI:http://dx.doi.org/10.1109/DSN.2011.5958251

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

The Next 700 BFT Protocols 0:41

Ilir Gashi, Peter T. Popov, and Lorenzo Strigini. 2007. Fault Tolerance via Diversity for Off-the-Shelf Prod-
ucts: A Study with SQL Database Servers. IEEE Trans. Dependable Sec. Comput. 4, 4 (2007), 280–294.

Jim Gray. 1978. Notes on Database Operating Systems. In Operating Systems — An Advanced Course.
Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and Marko Vukolić. 2008. The Next 700 BFT Protocols.

Technical Report LPD-REPORT-2008-008. EPFL.
Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and Marko Vukolić. 2010. The Next 700 BFT Protocols.

In Proceedings of the ACM European conference on Computer systems (EuroSys). http://eurosys2010.
sigops-france.fr/

James Hendricks, Gregory R. Ganger, and Michael K. Reiter. 2007. Low-Overhead Byzantine Fault-Tolerant
Storage. In Proceedings of the Symposium on Operating Systems Principles (SOSP). ACM.

Maurice Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness Condition for Concurrent
Objects. ACM Trans. Program. Lang. Syst. 12, 3 (1990), 463–492.

Prasad Jayanti. 2003. Adaptive and efficient abortable mutual exclusion. In Proceedings of the ACM sympo-
sium on Principles of distributed computing (PODC).

Rüdiger Kapitza, Johannes Behl, Christian Cachin, Tobias Distler, Simon Kuhnle, Seyed Vahid Moham-
madi, Wolfgang Schröder-Preikschat, and Klaus Stengel. 2012. CheapBFT: resource-efficient Byzantine
fault tolerance. In Proceedings of the 7th ACM european conference on Computer Systems (EuroSys ’12).
ACM, New York, NY, USA, 295–308. DOI:http://dx.doi.org/10.1145/2168836.2168866

Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund Wong. 2010. Zyzzyva: Spec-
ulative Byzantine fault tolerance. ACM Trans. Comput. Syst. 27, 4, Article 7 (Jan. 2010), 39 pages.
DOI:http://dx.doi.org/10.1145/1658357.1658358

Leslie Lamport. 2003. Lower Bounds for Asynchronous Consensus. In Proceedings of the International Work-
shop on Future Directions in Distributed Computing (FuDiCo).

Leslie Lamport. 2009. The PlusCal Algorithm Language. In ICTAC. 36–60.
Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. 2010. Reconfiguring a state machine. SIGACT News 41,

1 (2010), 63–73.
Fernando Pedone. 2001. Boosting System Performance with Optimistic Distributed Protocols. Comput. J.

34, 12 (2001), 80–86. DOI:http://dx.doi.org/10.1109/2.970581
Fred B. Schneider. 1990. Implementing fault-tolerant services using the state machine approach: a tutorial.

ACM Comput. Surv. 22, 4 (Dec. 1990), 299–319. DOI:http://dx.doi.org/10.1145/98163.98167
Bianca Schroeder, Adam Wierman, and Mor Harchol-Balter. 2006. Open versus closed: a cautionary tale. In

NSDI. 18–18.
Atul Singh, Tathagata Das, Petros Maniatis, Peter Druschel, and Timothy Roscoe. 2008. BFT protocols

under fire. In Proceedings of the Symposium on Networked Systems Design and Implementation (NSDI).
USENIX Association.

Sam Toueg. 1984. Randomized Byzantine Agreements. In Proceedings of the Third Annual ACM Symposium
on Principles of Distributed Computing. 163–178.

Robbert van Renesse and Rachid Guerraoui. 2010. Replication Techniques for Availability. In Replication.
19–40.

Robbert van Renesse and Fred B. Schneider. 2004. Chain replication for supporting high throughput and
availability. In Proceedings of the Symposium on Operating Systems Design and Implementation (OSDI).

Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, and Lau Cheuk Lung. 2009.
Spin One’s Wheels? Byzantine Fault Tolerance with a Spinning Primary. In Proceedings of
International Symposium on Reliable Distributed Systems (SRDS). IEEE Computer Society.
DOI:http://dx.doi.org/10.1109/SRDS.2009.36

Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, Lau Cheuk Lung, and Paulo Verı́ssimo.
2013. Efficient Byzantine Fault-Tolerance. IEEE Trans. Computers 62, 1 (2013), 16–30.

Received May 2012; revised February 2014; accepted July 2014

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

0:42 P.L. Aublin et al.

A. CORRECTNESS PROOFS
In this Appendix, we give the correctness proofs of ZLight (Sec. 4.2), Quorum (Sec. 5.2),
and Chain (Sec. 5.3). We omit the correctness proof of Backup (Sec. 4.3) which is
straightforward due to the properties of the underlying BFT protocol. Finally, the
proofs of liveness of our compositions trivially rely on the assumption of an exponen-
tially increasing Backup configuration parameter k (see Sec. 4.3).

Since ZLight and Quorum share many similarities, we give their correctness proof
together. This is followed by the proof of Chain.

A.1. ZLight and Quorum
In this Section, we prove that ZLight and Quorum implements Abstract. We first
prove the common properties of the two implementations and then focus on the only
different property (Progress).

Well-formed commit indications. It is easy to see that the reply returned by a commit
indication for a request req always equals rep(hreq), where (commit history) hreq is a
uniquely defined sequence of requests. Indeed, by Step Z4/Q3, in order to commit a
request, a client needs to receive identical digests (LHDigest) of some history h′ and
identical reply digests from all 3f + 1 replicas, including from at least 2f + 1 correct
replicas. By Step Z3 of ZLight (resp., Step Q2 of Quorum), a digest of the reply sent
by a correct replica is D(rep(h′)). Hence, h′ is exactly the commit history hreq and is
uniquely defined due to our assumption of collision-free digests.

Moreover, since a correct replica logs and then executes an invoked request req be-
fore sending a RESP message in Step Z4 (resp., Q3), it is straightforward to see that if
req is committed with a commit history hreq, then req is in hreq.

Validity. For any request req to appear in a commit or abort history, at least f + 1
replicas must have sent a history (or a digest of a history) containing req to the client
(see Step Z4/Q3 for commit histories, and Step P3 for abort histories). Hence, at least
one correct replica appended req to its local history. By Step Z3/Q2, the correct replica
rj appends req to its local history only if rj receives a REQ message with a valid MAC
from a client. This MAC is, in turn, present only if some client invoked req, or if req is
contained in some verified (valid) init history.

Moreover, by Step Z3/Q2, no replica logs/executes the same request twice (since ev-
ery replica maintains tj [c]). Hence, no request appears twice in any local history of
a correct process, and consequently, no request appears twice in any commit history.
In the case of abort histories, no request appears twice by construction (see Step P3
Sec. 4.2.2).

Termination. By assumption of a quorum of 2f+1 correct replicas and fair-loss links:
since correct clients (resp., replicas) periodically retransmit the PANIC (resp., ABORT)
messages (Step P1): (1) correct replicas eventually receive the PANIC message sent
by correct client c and (2) c eventually receives 2f + 1 ABORT messages from correct
replicas (sent in Step P2). Hence, if correct client c panics, it eventually aborts invoked
request req, in case c does not commit req beforehand.

To prove Commit and Abort Ordering we first prove the following Lemma.

LEMMA A.1. Let rj be a correct replica and LHreq
j the state of LHj upon rj logs req.

Then, LHreq
j remains a prefix of LHj forever.

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

The Next 700 BFT Protocols 0:43

PROOF. A correct replica rj modifies its local history LHj only in Step Z3/Q2 by
sequentially appending requests to LHj . Hence, LHreq

j remains a prefix of LHj for-
ever.

Commit Order. Assume, by contradiction, that there are two different committed
requests req (by benign client c) and req′ (by benign client c′), with different commit
histories hreq and hreq′ such that neither is the prefix of the other. Since a benign client
commits a request only if it receives in Step Z4/Q3 identical digests of replicas’ local
histories from all 3f+1 replicas, there must be a correct replica rj that sent D(hreq) to c
and D(hreq′) to c′ such that h(req) is not a prefix of hreq′ nor vice versa. A contradiction
with Lemma A.1.

Abort Order. First, we show that for every committed request req with the commit
history hreq and any ABORT message m sent by a correct replica rj containing a (digest
of a) local history LHm

j , hreq is a prefix of LHm
j . Assume, by contradiction, that there

are request req′, correct replica rj′ and ABORT message m′ such that the above does
not hold. Then, since a benign client needs to receive identical history digests from all
replicas to commit a request (Step Z4/Q3), and since rj′ stops executing new requests
before sending any ABORT message (Step P2), rj′ logged and executed req before send-
ing m′. However, by Lemma A.1, hreq′ is a prefix of LHm′

j′ — a contradiction.
By Step P3, a client that aborts a request waits for 2f+1 ABORT messages including

at least f + 1 from correct replicas. Since any commit history hreq is a prefix of every
history sent in an ABORT message by any correct replica (as shown above), at least
f + 1 received histories will contain hreq as a prefix, for any committed request req.
Hence, by construction of abort histories (Step P3 Sec. 4.2.2) every commit history hreq

is a prefix of every abort history.

Init Order. By Step Z3+, Sec. 4.2.3, 17 and Step P2, every correct replica must initial-
ize its local history (with some valid init history) before sending any RESP or ABORT
message. Since any common prefix CP of all valid init histories is a prefix of any par-
ticular init history I, CP is a prefix of every local history sent by a correct replica in an
RESP or ABORT message. Init Order for commit histories immediately follows. In the
case of abort histories, notice that out of 2f + 1 ABORT messages received by a client
on aborting a request in Step P3, at least f +1 are sent by correct replicas and contain
local histories that have CP as a prefix. Hence, by Step P3, CP is a prefix of any abort
history.

ZLight Progress. Recall that ZLight guarantees to commit clients’ requests if: there
are no replica/link failures and Byzantine client failures. Recall also that, with no link
failures, message propagation time between two correct processes is bounded by ∆c

and that message processing time is bounded by ∆p. Also, in Step Z1, a client triggers
a timer T set to 3∆ (where ∆ = ∆c +∆p). Then, to prove Progress, we prove a stronger
property that no client executes Step P1 and panics (consequently no client ever aborts
and Progress follows from Termination).

Assume by contradiction that there is a client c that panics and denote the first such
time by tPANIC . Since no client is Byzantine, c must be benign and c invoked request
req at t = tPANIC−3∆. Since no client panics by tPANIC all replicas execute all requests
they receive by tPANIC . Then, it is not difficult to see, since there are no link failures,

17Notice that, for Quorum, Step Z3+ defines additional actions performed during Step Q2.

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

0:44 P.L. Aublin et al.

that: (i) by t + ∆c the primary receives req and by time t + ∆ primary sends ORDER
messages in Step Z2 and (ii) by time t+2∆ < tPANIC the replicas send RESP messages
in Step Z3 for req. Since the primary is correct all replicas execute all requests received
before tPANIC in the same order (established by the sequence numbers assigned by the
primary). Hence, by t+ 3∆ = tPANIC , c receives and processes 3f + 1 identical replies
(Step Z4), commits req and never panics. A contradiction.

Quorum Progress. Recall that Quorum guarantees to commit clients’ requests only
if:

— there are no replica/link failures,
— no client is Byzantine, and
— there is no contention.

We assume that the timer T triggered in Step Q1 is set to 2∆ (where ∆ = ∆c +
∆p). Like in the proof of ZLight Progress, we prove a stronger property that no client
executes Step P1 and panics.

Assume by contradiction that there is a client c that panics and denote the first such
time by tPANIC . Since no client is Byzantine, c must be benign and c invoked request
req at t = tPANIC−2∆. Since no client panics by tPANIC all replicas execute all requests
they receive by tPANIC . Then, it is not difficult to see, since there are no link failures,
that by time t+∆ < tPANIC all replicas receive req and send RESP message in Step Q2.
Since there is no contention and all replicas are correct, all replicas order all requests
in the same way and send identical histories to the clients. Hence, by t+2∆ = tPANIC , c
receives and processes 3f+1 identical replies (Step Q3), commits req and never panics.
A contradiction.

A.2. Chain
In this Section, we prove that Chain implements Abstract with Progress equivalent to
that of ZLight (see also Appendix A.1).

We denote the predecessor (resp., successor) set of the replica rj , by ←−Rj (resp., −→Rj).
We also denote by Σlast the set of the last f + 1 replicas in the chain order, i.e., Σlast =
{rj ∈ Σ : j > 2t}. In addition, we say that correct replica rj logs (resp., executes) req at
position pos if snj = pos when rj logs/executes req.

Before proving Abstract properties, we first prove two auxiliary lemmas. Notice also
that Lemma A.1, Section A.1, extends to Chain as well.

LEMMA A.2. If correct replica rj logs req (at position sn, at time t1), then all correct
replicas sj , 1 ≤ j < i log req (at position sn, before t1).

PROOF. By contradiction, assume the lemma does not hold and fix rj to be the first
correct replica that logs req (at position sn), such that there is a correct replica rx
(x < j) that never logs req (at position sn); we say rj is the first replica for which req
skips. Since CHAIN messages are authenticated using CAs, rj logs req at position sn
only if rj receives a CHAIN message with MACs authenticating req and sn from all
replicas from←−Rj authenticate req and sn, i.e., only after all correct replicas from←−Rj log
req at position sn. If rx ∈

←−
Rj , rx must have logged req at position sn — a contradiction.

On the other hand, if rx /∈ ←−Rj , then rj is not the first replica for which req skips, since
req skips for any correct replica (at least one) from←−Rj — a contradiction.

LEMMA A.3. If benign client c commits req with history hreq (at time t1), then all
correct replicas in Σlast execute req (before t1) and the state of their local history upon
executing req is hreq.

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

The Next 700 BFT Protocols 0:45

PROOF. To prove this lemma, notice that correct replica rj ∈ Σlast generates a MAC
for the client authenticating req and D(h′) for some history h′ (Step C3): (1) only after
rj logs and executes req and (2) only if the state of LHj upon execution of req equals h′.
Moreover, by Step C3, no correct replica executes the same request twice. By Step C4,
a benign client cannot commit req with hreq unless it receives a MAC authenticating
req and D(h′) from every correct replica in Σlast. Hence the lemma.

Well-formed commit indications. By Step C4, in order to commit a request req a
client needs to receive MACs authenticating LHDigest = D(h′) for some history h′ and
the reply digest from all replicas from Σlast, including at least one correct replica. By
Step C3, a digest of the reply sent by a correct replica is D(rep(h′)). Hence, h′ is exactly
a commit history hreq and is uniquely defined due to our assumption of collision-free
digests.

Moreover, since a correct replica in Σlast logs and executes an invoked request before
sending a CHAIN message in Step C3, it is straightforward to see that if req is commit-
ted with a commit history hreq, then req is in hreq. Namely, notice that a client needs to
receive the MAC for the same local history digest D(hreq) from all f + 1 replicas from
Σlast including at least one correct replica rj . By Step C3, rj logs req and appends it to
its local history LHj before authenticating the digest of LHj ; hence, req ∈ hreq.

Validity. For any request req to appear in an abort (resp., commit) history h, at least
f + 1 replicas must have have sent h (resp., a digest of h) in Step P2 (resp., Step C3)
such that req ∈ h. Hence, at least one correct replica logged req.

Now, we show that correct replicas log only requests invoked by clients. By contra-
diction, assume that some correct replica logged a request not invoked by any client
and let rj be the first correct replica to log such a request req′ in Step C3 of Chain.
In case j < f + 1, rj logs req′ only if rj receives a CHAIN message with a MAC from
the client, i.e., only if some client invoked req, or if req is contained in some valid init
history. On the other hand, if j > f + 1, Lemma A.2 yields a contradiction with our
assumption that rj is the first correct replica to log req′.

Moreover, by Step C3, no replica logs the same request twice (every replica main-
tains tj [c]). Hence, no request appears twice in any local history of a correct process,
and consequently, no request appears twice in any commit history. In the case of abort
histories, no request appears twice by construction (see Step P3 Sec. 4.2.2).

Termination. Since Chain uses the same panicking/aborting mechanism as Quo-
rum/ZLight, the proof of Termination for ZLight/Quorum (Sec. A.1) applies.

Commit Order. Assume, by contradiction, that there are two different committed
request req (by benign client c) and req′ (by benign client c′) with different commit
histories hreq and hreq′ such that neither is the prefix of the other. By Lemma A.3, there
is correct replica rj ∈ Σlast that logged and executed req and req′ such that the state of
LHj upon executing these requests is hreq and hreq′ , respectively. A contradiction with
Lemma A.1 (recall that this lemma extends to Chain as well).

Abort Order. Assume, by contradiction, that there is committed request reqC (by
some benign client) with commit history hreqC and aborted request reqA (by some
benign client) with abort history hreqA , such that hreqC is not a prefix of hreqA . By
Lemma A.3 and the assumption of at most f faulty replicas, all correct replicas (at
least one) from Σlast log and execute reqC and their state upon executing reqC is hreqC .
Let rj ∈ Σlast be a correct replica with the highest index j among all correct replicas in

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

0:46 P.L. Aublin et al.

Σlast. By Lemma A.2, all correct replicas log all the requests in hreqC at the same po-
sitions these requests have in hreqC . In addition, a correct replica logs all the requests
belonging to hreqC before sending any ABORT message in Step P2; indeed, before send-
ing any ABORT message, a correct replica must stop further execution of requests.
Therefore, for every local history LHj that a correct replica sends in an ABORT mes-
sage, hreqC is a prefix of LHj .

Finally, by Step P3, a client that aborts a request waits for 2f + 1 ABORT messages
including at least f + 1 from correct replicas. By construction of abort histories (Step
P3), every commit history, including hreqC is a prefix of every abort history, including
hreqA , a contradiction.

Init Order. The proof is identical to the proof of ZLight/Quorum Init Order.

Progress (sketch). Chain guarantees to commit clients’ requests under the same con-
ditions as ZLight, i.e., if there are no replica/link failures and no Byzantine client
failures. Assuming that the message processing at processes takes ∆p, and communi-
cation time is bounded by ∆c, it is sufficient that clients set the timer T triggered in
Step C1 to (3f + 2)∆, where ∆ = ∆p + ∆c. Then, Progress of Chain is very simple to
show, along the lines of ZLight Progress (Sec. A.1).

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.

