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Abstract—Accountability is becoming increasingly required in
today’s distributed systems. Indeed, accountability allows not only
to detect faults but also to build provable evidence about the
misbehaving participants of a distributed system. There exists
a number of solutions to enforce accountability in distributed
systems, among which PeerReview is the only solution that is
not specific to a given application and that does not rely on any
special hardware. However, this protocol is not resilient to selfish
nodes, i.e. nodes that aim at maximising their benefit without
contributing their fair share to the system. Our objective in this
paper is to provide a software solution to enforce accountability on
any underlying application in presence of selfish nodes. To tackle
this problem, we propose the FullReview protocol. FullReview
relies on game theory by embedding incentives that force nodes
to stick to the protocol. We theoretically prove that our protocol is
a Nash equilibrium, i.e. that nodes do not have any interest in de-
viating from it. Furthermore, we practically evaluate FullReview
by deploying it for enforcing accountability in two applications:
(1) SplitStream, an efficient multicast protocol, and (2) Onion
routing, the most widely used anonymous communication pro-
tocol. Performance evaluation shows that FullReview effectively
detects faults in presence of selfish nodes while incurring a small
overhead compared to PeerReview and scaling as PeerReview.

I. INTRODUCTION

Distributed systems have always been the scene of various
software and hardware failures. These failures can have diverse
sources such as the crash of machines, bugs, misconfigurations,
as well as malicious attacks and users that deliberately tamper
with their software to gain some benefit. These failures are
especially difficult to deal with when the distributed system
spans over multiple administrative domains (also referred to
as MAD distributed systems) [1]. Examples of such systems
include peer-to-peer systems, computer grids, network services
(e.g., DNS), federated information systems and inter-domain
routing.

Accountability, which refers to the ability to detect and
expose node faults, is a promising paradigm to deal with these
types of failures. In the last decade various solutions have
been proposed to enforce accountability for specific applica-
tions (e.g., anonymous communication [7], online games [26],
network storage [27], randomised systems [2], inter domain
routing [16], virtualised systems [17]). While these solutions
offer strong accountability guarantees, their usability is limited
to the specific application domain for which they have been
devised. Hence, generic solutions that are not tailored to a
specific application have been proposed, some of which rely
on trusted hardware (e.g., Trinc [21], A2M [6], Pasture [19])
while others are generic software solutions. Our work targets

this second category of systems as they do not require users
(worldwide) to acquire specific hardware. To the best of our
knowledge, PeerReview [15] is the only protocol that falls
into this category of systems. In this protocol, nodes log their
interactions with other nodes in a secure log. This log is
then periodically audited by a set of other nodes assigned by
the system, i.e. the node’s monitors. During their audit, the
monitors verify that the monitored node did not tamper with
its log and that the latter corresponds to a correct execution
of the monitored protocol. An attractive result of PeerReview
in addition to its wide applicability is that it provides two
theoretical guarantees: completeness and accuracy. Informally,
completeness refers to the ability to detect (eventually) all the
observable faults, while accuracy refers to the ability to never
accuse correct nodes of misbehaviour.

PeerReview works under the Byzantine failure model, i.e.
a model where a majority of nodes are correct and where a
fixed (known) proportion of nodes in the system can behave
arbitrarily. While dealing with Byzantine nodes is important,
it has been demonstrated that in open collaborative envi-
ronments selfish nodes, also called free riders, constitute a
real threat [10], [20], [12], [9]. Selfish nodes are nodes that
tamper with their software (or download a tampered software
developed by others) in order to benefit from the system
without contributing their fair share to it.

In PeerReview, nodes are not encouraged to participate to
the monitoring of other nodes, which makes it vulnerable to
selfish nodes. Specifically, in presence of a proportion of selfish
nodes, some nodes in the system can be unsupervised if all
their monitors behave selfishly. As a result, these nodes can
harm the system without being detected, breaking the com-
pleteness property of PeerReview. To measure the impact of
this threat in practice, we deployed PeerReview for enforcing
accountability in the following two protocols: SplitStream [5],
an efficient multicast protocol and Onion routing [13], the most
used anonymous communication protocol. Experiments show
that in presence of 30% of selfish nodes, 54% and 85% of
messages are lost using the first and the second protocols,
respectively.

In this paper, we embrace the challenge of designing a
selfish-resilient protocol for enforcing accountability in dis-
tributed systems and present the FullReview protocol. The
objective of FullReview is to force selfish nodes to participate
in the monitoring of other nodes while they are executing a
given protocol. To reach this objective, the first idea that one
may have is to make monitors themselves accountable for their
actions by applying PeerReview. We show in this paper that
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this is not possible because using PeerReview to monitor itself
would require that each node’s log contains the log of all the
other nodes in the system, which is not scalable.

To overcome this problem, FullReview relies on a game
theoretic approach to force selfish nodes to stick to the moni-
toring protocol. Specifically, FullReview is a complete redesign
of the PeerReview protocol, in which we have embedded
incentives in such a way that it is not in the interest of any node
to deviate from the protocol, i.e. we prove that FullReview is
a Nash equilibrium [24]1.

We implemented FullReview and used it to monitor the
two protocols SplitStream and Onion routing. Performance
evaluation performed on a cluster of 50 machines shows that
FullReview is resilient to selfish nodes and that it incurs a
reasonable overhead compared to PeerReview. Complementary
simulations show that FullReview scales up to 1000 nodes.

The remaining of this paper is structured as follows. First,
we present the related works in Section II. Then, we show
the impact of selfish nodes in PeerReview and present our
system model in Section III. Further, we present an overview
of FullReview and its detailed description in sections IV and V,
respectively. Finally, we present the performance evaluation
of FullReview in Section VI and concluding remarks in Sec-
tion VII.

II. RELATED WORKS

Building robust distributed systems has been at the heart
of many research efforts in the last decade. In this context, a
new model called the Byzantine, Altruistic, Rational (BAR)
model has been proposed [1]. This model considers three
types of nodes: Byzantine nodes are nodes that can deviate
arbitrarily from the protocol; rational nodes are nodes that
deviate from the protocol if the performed deviation allows
them to increase their own benefit according to a known
utility function; altruistic nodes are nodes that always stick to
the protocol. In this context, a protocol is said to be BAR-
resilient if it tolerates a fixed amount of Byzantine nodes
and an unlimited proportion of rational nodes. BAR-resilient
protocols often combine game theory by adding incentives
that encourage rational nodes to stick to the protocol and
accountability techniques that expose Byzantine nodes in case
of deviation. In the last years, various collaborative systems
have been designed according to this model including protocols
for spam resilient content dissemination [3], distributed file
systems [1], video live streaming [23], [22], [14], anonymous
communication [4] and N-party data transfer [25]. The process
by which a new BAR-resilient protocol is designed usually
involves the following steps: (1) define the utility function
of rational nodes in the considered protocol; (2) list all the
possible rational deviations according to the defined utility
function; (3) for each identified deviation, propose incentives
for rational nodes such that any deviation would engender a
loss in the utility perceived by the deviating node and mech-
anisms that would catch the considered Byzantine deviation;
(4) prove that the proposed protocol is a Nash equilibrium.
The major limitation of this approach is that it has to be
performed manually by a system expert, which is complex

1Due to the lack of space, this proof is available in the companion technical
report [11]

and possibly error prone. Furthermore, any modification in the
original system requires to rethink the system as a whole, as
the latter may introduce new rational or Byzantine deviations.
Rational nodes in the BAR-model correspond to selfish nodes
in our work.

A grail that security managers may dream of having
is a way of automatically transforming a given protocol
into a BAR-resilient protocol. Two solutions that go towards
this direction have been proposed in the literature. First,
Nysiad [18] allows the automatic transformation of a given
protocol to a Byzantine resilient system. Nysiad reaches this
objective by replicating each node using a variant of replicated
state machines (RSMs). However, the resulting system does
not deal with rational nodes. Contrarily to Nysiad, PeerRe-
view [15] allows to automatically detect all sorts of observable
deviations, including both selfish and Byzantine deviations,
that a node would perform in a given monitored protocol.
PeerReview reaches this objective by using tamper evident
logs and assigning monitors to nodes, which periodically
assess the correctness of a node by comparing its log with
a correct execution of the protocol obtained using a reference
implementation. However, while PeerReview allows to deter
faults in the underlying protocol to which it is applied, it does
not detect deviations performed by nodes on its own protocol
steps.

Our objective in this paper is to design the first generic
protocol that deals with both selfish and Byzantine nodes on
any underlying protocol.

III. PROBLEM STATEMENT AND SYSTEM MODEL

We present in this section an evidence that the PeerReview
protocol fails to enforce accountability in presence of selfish
nodes in Section III-A. We then present our system model in
Section III-B.

A. Problem statement

Let us consider a system where nodes can be correct,
selfish or Byzantine. As introduced in the previous section,
correct nodes follow the protocol, Byzantine nodes can behave
arbitrarily and selfish nodes aim at maximizing their benefit
with respect to a known utility function. The PeerReview
protocol has been designed under the assumption that every
node is monitored by a set of monitors and that each monitor
set contains at least one correct node that executes all the
monitoring steps. In this work, we remove this assumption
and consider that any node in the system can behave self-
ishly if it has an interest in doing so. We show that nodes
executing PeerReview can skip some steps of the monitoring
protocol without being detected and that such behaviour can
have a dramatic impact on the performance of the monitored
protocol. We provide in the companion technical report [11]
a complete analysis of all the protocol steps of PeerReview
and list all the selfish deviations that they are subject to. Due
to the lack of space, we present here our practical results
only. Specifically, to assess the impact of selfish nodes in
PeerReview, we performed the following two experiments.
In the first experiment, we deployed on one hundred nodes
the SplitStream protocol [5], an efficient tree based multicast
protocol, monitored by PeerReview. In the second experiment,
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first experiment, selfish nodes follow the model presented in
Section III-B. Specifically, they deviate only if they have an
interest to do so and if there is no risk to be caught. Instead, in
the second experiment, we consider that selfish nodes deviate
if they have an interest to do so without considering the risk
of exclusion. This latter experiment shows that if they decide
to do so, selfish nodes are quickly detected by their monitors
and excluded from the system.

For both experiments we used the two applications moni-
tored by PeerReview and FullReview. The number of monitors
per node is fixed to 2 and the audit period is set to 10s.

The results of the first experiment are presented in Fig-
ure 12. This figure shows the percentage of received messages
as a function of the percentage of selfish nodes. SplitStream
and FullReview are deployed with 50 nodes on G5K. We
evaluate FullReview with different number of relays (5, 10,
20 and 40), that are chosen at random. However, due to lack
of space, we present the results with 5 relays only. Increasing
the number of relays leads to worst results for PeerReview as
the probability to choose a selfish node in an Onion routing
path becomes higher. We first observe in this figure that, using
PeerReview, SplitStream and Onion routing do not tolerate
selfish nodes. Indeed, in presence of only 10% of selfish nodes,
only 79% and 66% of messages are received in the SplitStream
and Onion routing applications, respectively. This represents a
loss of 21% and 34% messages, respectively, which is not
acceptable. This percentage decreases when the proportion of
selfish nodes increases, reaching 23% in SplitStream and 5%
in Onion routing, in presence of 50% of selfish nodes. Instead,
using FullReview, we observe that all messages are received in
both applications as selfish nodes have no interest in deviating.
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Fig. 12: [G5K] Percentage of received messages in SplitStream
and Onion routing as a function of the percentage of selfish
nodes.

The results of the second experiment are presented in Fig-
ure 13. In this experiment, we measure the percentage of
received messages in SplitStream with PeerReview and Full-
Review where selfish nodes start to deviate from the protocol
after 20s. This experiment has been launched with 50 nodes
using simulations. As explained above, in this experiment,
selfish nodes behave selfishly without reasoning on the risk
of being detected. Using PeerReview, we observe that selfish
nodes impact the system as soon as they behave selfishly,
without ever being detected. Using FullReview, we observe
that selfish nodes impact the system during a small time frame,
corresponding to the audit frequency, after which they are

detected and evicted from the system. As a result, all the
messages are received for the rest of the experiment. Note
that choosing a smaller audit period allows the system to
detect selfish nodes more rapidly, but at the expense of some
additional overhead, as we show in the next section.
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Fig. 13: [SIM] SplitStream percentage of received messages
during an experiment in which between 10% and 50% of nodes
start to act selfishly after 20s.

D. Performance in the fault-free case

In this section we assess the performance and overhead of
FullReview, compared to PeerReview, in the fault-free case.
To this end, we perform three experiments. We launch each
of the experiments of this section both using simulations and
G5K, but we show the results on G5K only. The results using
simulations are consistent and can be found in the companion
technical report [11].

In the first two experiments, we measure the network traffic
and the rate at which the logs grow w.r.t. the number of
monitors, in PeerReview and FullReview respectively. In the
case of Onion routing, an onion path was composed of 5 relays.
Figure 14 presents the results for both SplitStream and Onion
routing. Each value has been obtained by running the system
with 50 nodes during 5 minutes.

In the left figure, each bar represents the traffic due to
the payload of the application. On top of this payload is the
traffic due to PeerReview, on top of which is the overhead of
FullReview in addition to the one of PeerReview. In this figure,
we observe that the average traffic per node increases w.r.t. to
the number of monitors for both PeerReview and FullReview
in the two applications. This is due to all the messages that
need to be exchanged between nodes and their monitors.
Further, we observe that the overhead due to accountability
in the SplitStream application has an overall cost of 14% in
PeerReview with two monitors and an extra cost of 7% in
FullReview. This overhead grows up to 45% for PeerReview
and an additional 31% for FullReview when 5 monitors are
used. These costs are much higher if compared to the payload
of the Onion routing application. For instance, enforcing
accountability in Onion routing using PeerReview generates
a traffic of 129kb/s per node while the application itself
generates a payload of only 18kb/s per node. However, put
into context this result is not bad, as enforcing accountability
in anonymous communication protocols is a very challenging
task for which existing solutions often require the heavy use
of broadcast primitives (e.g., RAC [4], Dissent [7]). Further,
assuming that nodes are connected using Gigabit links (in the
case of a LAN) or even using few Megabit links (in the case of
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Fig. 14: [G5K] Average network traffic and log growing rate per node of SplitStream (SS) and Onion routing (OR) w.r.t. the
number of monitors.

a WAN), 129kb/s seems a reasonable overhead. The good news
is that if the developer accepts to pay the cost of accountability
using PeerReview in a system with a small payload, using a
selfish resilient accountability system, i.e. FullReview, would
cost him an extra 3kb/s (i.e. 2% more traffic) with two monitors
and an extra 15kb/s (i.e. 5% more traffic) with five monitors.
Note that, overall, enforcing accountability using PeerReview
is more expensive in the Onion routing application than in the
SplitStream application because in the former application the
full onions are stored in the log while in the latter instead of
storing the video chunks received by nodes in the log, we store
only their identifier. Indeed, storing onions was the only way
we found to enable monitors to verify that a node has correctly
decrypted and forwarded an onion it received.

In the right figure, each bar represents the average growing
rate of the log of nodes. Similarly to the previous figure, the
cost of FullReview is shown as a delta in addition to the cost
of PeerReview. Note that logs do not grow forever. Indeed,
as in PeerReview, logs are truncated after a given amount of
time and audits are performed only for the new parts of the
log. Obviously, the longer the logging period chosen by the
designer, the higher the probability to deter faults.

Results depicted in this figure show that the log growing
rate of the SplitStream application is higher than log growing
rate of the Onion routing application, which is due to the fact
that the SplitStream application generates more messages to
send the video stream than Onion routing, and thus more
interactions are added to the log. Further we observe that
the higher the number of monitors per node the higher the
log growing rate. On the Onion routing application, the over-
head in terms of log growing rate is equal to 4.9% when
using FullReview with two monitors and increases up to 24%
when using five monitors. On the SplitStream application,
this overhead is higher as it spans from 6.8% to 30% when
using respectively two and five monitors. Yet, we consider this
overhead as reasonable. Indeed, in the worst of our experiments
(i.e, in the SplitStream application using five monitors), for
24 hours logging, nodes need to devote 4.4GB of storage for
enforcing accountability in presence of selfish nodes, which is
reasonable.

In the third experiment, we measure the impact of the audit
period on the overhead of FullReview compared to PeerReview.
The audit period was ranging from 1s to 30s. We set the
number of nodes to 50, with 2 monitors per node and 5

relays for the Onion routing application. Each experiment
last 5 minutes. Results, presented in Table I, show that even
with a high frequency of audit (i.e. every second), FullReview
generates only 6.7% more traffic and logs are 8.2% larger than
PeerReview in the worst case.

Audit period 1s 5s 10s 30s

SS
Log size +7.4% +6.8% +6.7% +6.4%

Network traffic +6.7% +6.2% +6.1% +5.9%

OR
Log size +8.2% +4.9% +4.8% +3.3%

Network traffic +2.9% +2.6% +2.3% +1.9%

TABLE I: [G5K] Overhead of FullReview compared to Peer-
Review, for both SplitStream (SS) and Onion routing (OR),
with an audit period ranging from 1s to 30s.

To summarize, FullReview adds a small overhead to Peer-
Review in terms of generated traffic and log size. This overhead
is mainly due to the new log entries inserted by FullReview to
detect selfish nodes. Similarly to PeerReview, the cost of Full-
Review increases with the number of monitors per node and
with the frequency of the audits. Overall, accounting for the
increasing resources (storage and network bandwidth) at the
disposal of a large public (Terabytes of storage and Megabits
of network bandwidth), the cost of enforcing accountability in
presence of selfish nodes becomes a realistic option.

E. Scalability of FullReview

In this section we show that SplitStream-FullReview and
Onion routing-FullReview scale up to at least 1000 nodes.

Figure 15 presents the network traffic and the log growing
rate of SplitStream and Onion routing, for both PeerReview
and FullReview, as a function of the number of nodes in the
system. Each value has been measured via a simulation that
lasts 100s. Moreover, the system has been configured with 5
monitors per nodes. As one could expect from the results of
Figure 14, using less monitors provides better performance.
In addition, the audit period was set to 10s. Finally, Onion
routing was configured with 40 relays and was sending onions
at a rate of 16kb/s.

From this figure we can draw the following conclusions.
First of all, for both SplitStream and Onion routing, the
network traffic and log growing rate of FullReview is within a
constant factor of PeerReview. For instance, with SplitStream,
the log growing rate (resp. network traffic) of FullReview is
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Fig. 15: [SIM] Average network traffic and log growing rate of SplitStream and Onion routing w.r.t. the number of nodes in the
system.

equal to 1.4x (resp. 1.3x) the one of PeerReview. This is due to
the fact that FullReview adds a constant number of operations
on the ones performed by PeerReview. Second, we can observe
that FullReview scales up to 1000 nodes, as the network traffic
and log size remain fairly stable despite the increase of the
number of nodes. The reason is that each node always interacts
with the same number of nodes on average, whatever the
overall number of nodes in the system (i.e. its partners w.r.t.
to the application and a fixed number of monitors).

VII. CONCLUSION

This paper addresses the problem of accountable dis-
tributed systems in presence of selfish nodes. We have shown
that PeerReview, the only software generic solution to enforce
accountability, does not tolerate selfish nodes. To tackle this
problem we propose the FullReview protocol. This protocol
uses game theory techniques by embedding incentives that
force selfish nodes to stick to the protocol. We have evaluated
FullReview on a cluster of physical machines and using
simulation with two applications: SplitStream, an efficient
multicast protocol, and Onion routing, the most widely used
anonymous communication protocol. Our evaluation makes the
following points. First, contrarily to PeerReview, FullReview
effectively tolerates selfish nodes. Second, FullReview has
a low additional overhead compared to PeerReview. Finally,
FullReview scales up to 1000 nodes.
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